Heidrun Ellinger-Ziegelbauer

Mathieu Vinken2
Vera Rogiers2
Tamara Vanhaecke2
Hans-Juergen Ahr2
Learn More
  • Markus Schug, Regina Stöber, Tanja Heise, Hans Mielke, Ursula Gundert-Remy, Patricio Godoy +11 others
  • 2012
Cultivated hepatocytes represent a well-established in vitro system. However, the applicability of hepatocytes in toxicogenomics is still controversially discussed. Recently, an in vivo/in vitro discrepancy has been described, whereby the non-genotoxic rat liver carcinogen methapyrilene alters the expression of the metabolizing genes SULT1A1 and ABAT, as(More)
The concept of mechanistic toxicogenomics implies that compound-induced changes in gene expression profiles provide valuable information about their mode of action. A growing number of research groups have presented evidence that whole-genome gene expression profiling techniques might be used as tools for in vivo and in vitro generation of gene signatures(More)
In the area of omics profiling in toxicology, i.e. toxicogenomics, characteristic molecular profiles have previously been incorporated into prediction models for early assessment of a carcinogenic potential and mechanism-based classification of compounds. Traditionally, the biomarker signatures used for model construction were derived from individual(More)
At present, substantial efforts are focused on the development of in vitro assays coupled with “omics” technologies for the identification of carcinogenic substances as an alternative to the classical 2-year rodent carcinogenicity bioassay. A prerequisite for the eventual regulatory acceptance of such assays, however, is the in vivo relevance of the(More)
Exposing eukaryotic cells to a toxic compound and subsequent gene expression profiling may allow the prediction of selected toxic effects based on changes in gene expression. This objective is complicated by the observation that compounds with different modes of toxicity cause similar changes in gene expression and that a global stress response affects many(More)
We investigated a glomerulonephritis (GN) model in rats induced by nephrotoxic serum (NTS) which contains antibodies against the glomerular basement membrane (GBM). The anti-GBM GN model in rats is widely used since its biochemical and histopathological characteristics are similar to crescentic nephritis and Goodpasture's disease in humans (Pusey, 2003[2]).(More)
The current gold-standard method for cancer safety assessment of drugs is a rodent two-year bioassay, which is associated with significant costs and requires testing a high number of animals over lifetime. Due to the absence of a comprehensive set of short-term assays predicting carcinogenicity, new approaches are currently being evaluated. One promising(More)
  • 1