Learn More
Motor skills can take weeks to months to acquire and can diminish over time in the absence of continued practice. Thus, strategies that enhance skill acquisition or retention are of great scientific and practical interest. Here we investigated the effect of noninvasive cortical stimulation on the extended time course of learning a novel and challenging(More)
Despite its increasing use in experimental and clinical settings, the cellular and molecular mechanisms underlying transcranial direct current stimulation (tDCS) remain unknown. Anodal tDCS applied to the human motor cortex (M1) improves motor skill learning. Here, we demonstrate in mouse M1 slices that DCS induces a long-lasting synaptic potentiation(More)
In humans, training in which good performance is rewarded or bad performance punished results in transient behavioral improvements. The relative effects of reward and punishment on consolidation and long-term retention, critical behavioral stages for successful learning, are not known. Here, we investigated the effects of reward and punishment on these(More)
Convergent findings point to a left-sided specialization for the representation of learned actions in right-handed humans, but it is unknown whether analogous hemispheric specialization exists for motor skill learning. In the present study, we explored this question by comparing the effects of anodal transcranial direct current stimulation (tDCS) over(More)
OBJECTIVE Previous studies demonstrated that single-pulse transcranial magnetic stimulation (TMS) of one motor cortex (M1) exerts a brief inhibitory effect on the contralateral M1. The purpose of this study was to test the hypothesis that 30min of 1Hz TMS of M1 will result in a lasting increase in excitability in the contralateral M1. METHODS Healthy(More)
27 Convergent findings point to a left-sided specialization for the representation of learned actions in right-28 handed humans, but it is unknown whether analogous hemispheric specialization exists for motor skill 29 learning. Here, we explored this question by comparing the effects of anodal transcranial direct current 30 stimulation (tDCS) over either(More)
Transcranial Direct Current Stimulation (tDCS) is a method of non-invasive brain stimulation that has been frequently used in experimental and clinical pain studies. However, the molecular mechanisms underlying tDCS-mediated pain control, and most important its placebo component, are not completely established. In this pilot study, we investigated in vivo(More)
The mechanisms of action of tDCS for behavioral modification are not yet fully understood. However, one common observation is that its behavioral effects are most pronounced and long-lasting when tDCS is paired with endogenous, training-induced brain activity (1). In humans, training produces modality-specific neural network activation and(More)
Motor skills are required for activities of daily living. Transcranial direct current stimulation (tDCS) applied in association with motor skill learning has been investigated as a tool for enhancing training effects in health and disease. Here, we review the published literature investigating whether tDCS can facilitate the acquisition, retention or(More)