Heidi Hellén

Learn More
The inorganic main elements, trace elements and PAHs were determined from selected PM(1), PM(2.5) and PM(10) samples collected at the Nordic background station in Virolahti during different seasons and during the wildfire episodes in 2006. Submicron particles are those most harmful to human beings, as they are able to penetrate deep into the human(More)
The importance of wood combustion to local air quality was estimated by measuring different air pollutants and conducting chemical mass balance modelling. PM10, PM2.5, PAHs and VOC concentrations in ambient air were measured in a typical Finnish residential area. Measurements were conducted in January-March 2006. For some compounds, wood combustion was(More)
Ambient air concentrations and source contributions of 71 volatile organic compounds (VOCs) including C2-C10 nonmethane hydrocarbons, halogenated hydrocarbons, and carbonyls were studied at urban and residential sites in Finland. On the basis of the emission profile and concentration measurements, the contributions of different sources were estimated using(More)
Boreal forests emit large amounts of volatile organic compounds (VOCs) which react with the hydroxyl radical (OH) to influence regional ozone levels and form secondary organic aerosol. Using OH reactivity measurements within a boreal forest in Finland, we investigated the budget of reactive VOCs. OH reactivity was measured using the comparative reactivity(More)
Plants release volatile organic compounds (VOCs) that have many eco-physiological functions. Induction of plant VOCs is known to occur upon herbivory. Herbivore-induced VOCs are involved in the attraction of predators and parasitoids, a phenomenon known as an indirect defense of plants. We measured the VOC profiles of the wild species Veronica spicata with(More)
We examined a new method to determine the aerosol yield of precursors of secondary organic aerosols in the presence of organic seed particles. To distinguish between the oxidation products of the compound in question and the organic seed, the compound was labeled with stable isotopes and aerosol samples were analyzed by isotope ratio mass spectrometry(More)
The diffusive sampling method was evaluated for measuring benzene, toluene, ethylbenzene, xylenes, styrene, propylbenzene, ethyltoluenes, trimethylbenzenes and methyl tert-butyl ether (MTBE) in the urban air of Helsinki, Finland. Concentrations were measured in 2-week periods at four different sites during the year 2000. Tube type adsorbent tubes were(More)
Volatile organic compounds (VOCs) have a great influence on tropospheric chemistry; they affect ozone formation and they or their reaction products are able to take part in secondary organic aerosol formation; some of the VOCs are themselves toxic. Knowing the concentrations and sources of different reactive volatile organic compounds is essential for the(More)
We present spring and summer volatile organic compound (VOC) emission rate measurements from Norway spruce (Picea abies L. Karst) growing in a boreal forest in southern Finland. The measurements were conducted using in situ gas chromatograph with 1 to 2 h time resolution to reveal quantitative and qualitative short-term and seasonal variability of the(More)
Proton-transfer-reaction mass spectrometry (PTR-MS) is a useful tool in ambient trace gas analysis, especially for the analysis of oxygenated volatile organic compounds (OVOC). Many OVOCs are produced during photooxidation of volatile organic compounds and contribute to both the gas phase and secondary organic aerosols (SOA). The inlet system of the PTR-MS(More)