Heidi Brockman

Learn More
Of the individual potentials which comprise the potential profile of a membrane, the least well understood is the dipole potential. In general, the dipole potential is manifested between the hydrocarbon interior of the membrane and the first few water layers adjacent to the lipid head groups. Changes in dipole potential caused by spreading a lipid at an(More)
Variants of membrane-active proteins and peptides are increasingly available through synthesis and molecular engineering. When determining the effects of structural changes upon the interaction of these proteins with lipid membranes, monomolecular films of lipids at the air-water interface have significant advantages over bilayers and other lipid(More)
Many people attempt to discover useful information by reading large quantities of unstructured text, but because of known human limitations even experts are ill-suited to succeed at this task. This difficulty has inspired the creation of numerous automated cluster analysis methods to aid discovery. We address two problems that plague this literature. First,(More)
We develop a computer-assisted method for the discovery of insightful conceptualizations, in the form of clusterings (i.e., partitions) of input objects. Each of the numerous fully automated methods of cluster analysis proposed in statistics, computer science, and biology optimize a different objective function. Almost all are well defined, but how to(More)
Olopatadine is a human conjunctival mast cell stabilizer with antihistaminic activity. Ketotifen is an older molecule that possesses antihistaminic activity and is reported to have additional pharmacological properties. The interactions of these two compounds with model membranes (i.e., monolayers of 1-stearoyl-2-oleoyl-sn-glycerophosphocholine at the(More)
  • 1