Heidelinde Jakel

Learn More
The apolipoprotein A5 gene (APOA5) has been repeatedly implicated in lowering plasma triglyceride levels. Since several studies have demonstrated that hyperinsulinemia is associated with hypertriglyceridemia, we sought to determine whether APOA5 is regulated by insulin. Here, we show that cell lines and mice treated with insulin down-regulate APOA5(More)
Alterations in the expression of the recently discovered apolipoprotein A5 gene strongly affect plasma triglyceride levels. In this study, we investigated the contribution of APOA5 to the liver X receptor (LXR) ligand-mediated effect on plasma triglyceride levels. Following treatment with the LXR ligand T0901317, we found that APOA5 mRNA levels were(More)
Hypertriglyceridemia is an independent risk factor for the development of cardiovascular disease and is often associated with diabetes, inflammation and the metabolic syndrome. Recently, apolipoprotein A5 (APOA5) was identified as a novel member of the APOA1/C3/A4 gene cluster. Data from mice over-expressing or lacking APOA5 provide direct evidence that(More)
Liver X receptors (LXRs) are members of the nuclear receptor superfamily, which have been implicated in lipid homeostasis and more recently in glucose metabolism. Here, we show that glucose does not change LXRalpha protein level, but affects its localization in pancreatic beta-cells. LXRalpha is found in the nucleus at 8 mM glucose and in the cytoplasm at(More)
The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. d-Glucose activates APOA5 gene expression in a time- and(More)
Liver X receptors (LXRs) are members of the nuclear receptor superfamily, which have been implicated in lipid homeostasis and more recently in glucose metabolism. Here, we show that glucose does not change LXRα protein level, but affects its localization in pancreatic β-cells. LXRα is found in the nucleus at 8 mM glucose and in the cytoplasm at 4.2 mM.(More)
Retinoic acid receptor-related orphan receptor alpha (RORalpha) is a member of the nuclear receptor family. Recently, cholesterol (derivatives) has been identified as an RORalpha ligand and deorphanized this receptor. RORalpha is expressed in many tissues and is therefore a regulator of multiple biological processes. Studies of staggerer mice and in vitro(More)
  • 1