Learn More
Living systems rely on pervasive vascular networks to enable a plurality of biological function in both soft and hard tissue. Extensive vasculature in composite structures, such as osseous tissue in bone and tracheary elements in trees, exemplify natural materials that are lightweight, high-strength, and capable of mass and energy transport. In contrast,(More)
We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive(More)
When heated, poly(lactic acid) (PLA) fibers depolymerize in a controlled manner, making them potentially useful as sacrificial fibers for microchannel fabrication. Catalysts that increase PLA depolymerization rates are explored and methods to incorporate them into commercially available PLA fibers by a solvent mixture impregnating technique are tested. In(More)
  • 1