Learn More
  • H An, W Lin
  • 2000
A quantitative estimate of cerebral blood oxygen saturation is of critical importance in the investigation of cerebrovascular disease because of the fact that it could potentially provide information on tissue viability in vivo. In the current study, a multi-echo gradient and spin echo magnetic resonance imaging sequence was used to acquire images from(More)
Quantitative estimates of cerebral metabolic rate of oxygen utilization using magnetic resonance imaging can have profound implications for the understanding of brain metabolic activity as well as the investigation of cerebrovascular disease. In this study, five normal volunteers were studied. All images were acquired on a Siemens 1.5 T scanner (Siemens(More)
Recently, a new imaging method was proposed by Reichenbach et al (Radiology 1997;204:272-277) to image small cerebral venous vessels specifically. This method, referred to as high-resolution blood oxygen level-dependent venography (HRBV), relies on the susceptibility difference between the veins and the brain parenchyma. The resulting phase difference(More)
BACKGROUND MicroRNAs are noncoding regulatory RNAs strongly implicated in carcinogenesis, cell survival, and chemosensitivity. Here, microRNAs associated with chemoresistance in ovarian carcinoma, the most lethal of gynaecological malignancies, were identified and their functional effects in chemoresistant ovarian cancer cells were assessed. METHODS(More)
BACKGROUND/AIMS In massive hepatic necrosis, hepatic stem cells constitute a canal of Hering derived, cytokeratin 19 (CK19) positive 'ductular reaction' (DR). Whether DRs in cirrhosis are activated stem cells (so called 'buds') or biliary metaplasia of cholestatic, injured hepatocytes is still debated. We investigate derivation of intraseptal hepatocytes(More)
BACKGROUND Ovarian carcinoma is the leading cause of cancer death worldwide among gynecological malignancies, and the majority of cases are related with recurrence and chemoresistance. Cancer stem cells (CSCs) are believed to be one of the causes of recurrent or chemoresistant ovarian cancer, and microRNAs are regulatory molecules newly implicated to(More)
The phosphatidylinositol 3-kinase (PI3K) pathway is one of the critical signaling cascades playing important roles in the chemoresistance of human cancer cells, including ovarian cancer. In this study, we investigated the potential of targeting the PI3K p110β-isoform as a novel approach to overcome the chemoresistance in ovarian cancer. The effects on(More)
Cytokines in the central nervous system (CNS) may play an important role in functioning as intercellular signals that orchestrate the response to injury. Whether this is a cause or result of the brain disease process is uncertain. We investigated IFN-gamma, IL-2, IL-4, IL-6, and IgE in the sera of 38 patients with cerebral infarction during the acute stage(More)
Fascin1 (FSCN1) involved in cell motility and filopodia assembly plays important roles in biological processes such as cancer invasion and metastasis of multiple epithelial tumors. High-grade serous ovarian carcinoma (HGSOC) is aggressive and metastatic by acquiring an invasive phenotype and this step requires remodeling of the actin cytoskeleton. Thus, the(More)
The purpose of this study was to determine the reaction mechanism of corticosteroid by analyzing the expression patterns of neuropeptides (substance P (SP), calcitonin gene related peptide (CGRP)) and of cytokines (interleukin (IL)-1α, tumor growth factor (TGF)-β) after corticosteroid treatment in lateral epicondylitis. In addition, we also investigated(More)