Learn More
A probabilistic method for tracking 3D articulated human figures in monocular image sequences is presented. Within a Bayesian framework, we define a generative model of image appearance, a robust likelihood function based on image graylevel differences, and a prior probability distribution over pose and joint angles that models how humans move. The(More)
This paper addresses the problem of probabilistically model-ing 3D human motion for synthesis and tracking. Given the high dimensional nature of human motion, learning an explicit probabilistic model from available training data is currently impractical. Instead we exploit methods from texture synthesis that treat images as representing an implicit(More)
This paper address the problems of modeling the appearance of humans and distinguishing human appearance from the appearance of general scenes. We seek a model of appearance and motion that is generic in that it accounts for the ways in which people's appearance varies and, at the same time, is specific enough to be useful for tracking people in natural(More)
This paper investigates object categorization according to function, i.e., learning the affordances of objects from human demonstration. Object affordances (functionality) are inferred from observations of humans using the objects in different types of actions. The intended application is learning from demonstration , in which a robot learns to employ(More)
The visual analysis of human manipulation actions is of interest for e.g. human-robot interaction applications where a robot learns how to perform a task by watching a human. In this paper, a method for classifying manipulation actions in the context of the objects manipulated , and classifying objects in the context of the actions used to manipulate them(More)
This study has been performed in order to test the human-machine interface of a computer-based speech training aid named ARTUR with the main feature that it can give suggestions on how to improve articulation. Two user groups were involved: three children aged 9-14 with extensive experience of speech training, and three children aged 6. All children had(More)