Hector Rubinstein

Learn More
We consider the possibility of generation of the seeds of primordial magnetic field on inflation and show that the effect of the back reaction of this field can be very important. Assuming that back reaction does not spoil inflation we find a rather strong restriction on the amplitude of the primordial seeds which could be generated on inflation. Namely,(More)
We discuss recent measurements of the wavelength-dependent absorption coefficients in deep South Pole ice. The method uses transit-time distributions of pulses from a variable-frequency laser sent between emitters and receivers embedded in the ice. At depths of 800-1000 m scattering is dominated by residual air bubbles, whereas absorption occurs both in ice(More)
Merging an HD+ beam with velocity matched electrons in a heavy ion storage ring we observed rapid cooling of the rotational excitations of the HD+ ions by superelastic collisions (SEC) with the electrons. The cooling process is well described using theoretical SEC rate coefficients obtained by combining the molecular R-matrix approach with the adiabatic(More)
Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The(More)
The optical properties of the ice at the geographical South Pole have been investigated at depths between 0.8 and 1 kilometer. The absorption and scattering lengths of visible light ( approximately 515 nanometers) have been measured in situ with the use of the laser calibration setup of the Antarctic Muon and Neutrino Detector Array (AMANDA) neutrino(More)
We present the results of a Coulomb explosion experiment that allows for the imaging of the rovibrational wave function of the metastable H2- ion. Our measurements confirm the predicted large internuclear separation of 6 a.u., and they show that the ion decays by autodetachment rather than by spontaneous dissociation. Imaging of the resulting H2 products(More)