Learn More
Male zebra finches normally crystallize song at approximately 90 days and do not show vocal plasticity as adults. However, changes to adult song do occur after unilateral tracheosyringeal (ts) nerve injury, which denervates one side of the vocal organ. We examined the effect of placing bilateral lesions in LMAN (a nucleus required for song development but(More)
Birdsong is a learned vocal behavior used in intraspecific communication. The motor pathway serving learned vocalizations includes the forebrain nuclei NIf, HVC, and RA; RA projects to midbrain and brain stem areas that control the temporal and acoustic features of song. Nucleus Uvaeformis of the thalamus (Uva) sends input to two of these forebrain nuclei(More)
Adult male zebra finches underwent unilateral denervation of the syrinx or unilateral lesion of the forebrain nucleus HVC known to be important for song control. Disruptive effects on song were greater after right-side than after left-side operations. After denervation of the right half of the syrinx, the fundamental frequencies of all syllables within a(More)
Zebra finch (Taeniopygia guttata) song syllables often include harmonically related frequency components. These harmonics may be suppressed, and this differential emphasis varies between the syllables in a song and between individual birds' songs. These patterns of harmonic suppression are timbre. Individual syllables' patterns of harmonic suppression are(More)
As do many songbirds, zebra finches sing their learned songs while performing a courtship display that includes movements of the body, head and beak. The coordination of these display components was assessed by analyzing video recordings of courting males. All birds changed beak aperture frequently within a single song, and each individual's pattern of beak(More)
The hypoglossal motor neurons that innervate the vocal organ (syrinx) of the male zebra finch show a selective, long-latency (50-millisecond) response to sound. This response is eliminated by lesions to forebrain song-control nuclei. Different song syllables elicit a response from different syringeal motor neurons. Conspecific vocalizations may therefore be(More)
The vocal control system of oscine songbirds has some perplexing properties--e.g. laterality, adult neurogenesis, neuronal replacement--that are not predicted by common views of how vocal learning takes place. Similarly, we do not understand the relation between the direct pathway for the control of learned song and the recursive pathway necessary for song(More)
Zebra finches are age-limited learners; males crystallize their songs at 90 days and do not subsequently alter those songs. However, a variety of interventions, including deafening and syringeal denervation, result in long-term changes to the crystallized song. These changes can be prevented by lesioning nucleus LMAN. As different social contexts for song(More)
We examined how 61 young zebra finch (Taeniopygia guttata) males copied song from 5 adult tutors. Zebra finch song consists of a string of 5-15 distinct syllables, and these syllables were copied as chunks, or strings of consecutive syllables (modal length = 3). The silent interval between 2 syllables was copied as part of the syllable after the silence.(More)
Auditory input to the right or left forebrain of adult male zebra finches (Taeniopygia guttata) was disrupted by lesioning the ipsilateral auditory relay nucleus of the thalamus. These birds were then presented with two kinds of auditory discriminations: (i) between their own song and the song of a cage mate; (ii) between two versions of an unfamiliar zebra(More)