Learn More
The inflammation-associated cytokine interleukin-6 (IL-6) can contribute to tumor growth and resistance to therapy by the activation of survival mechanisms. In several human cancers, IL-6-activated survival signaling involves the signal transducers and activators of transcription (Stat) factors or protein kinase cascades. microRNAs (miRNAs) are endogenous(More)
The 140-kb a1-sh2 interval of the maize genome contains at least four genes (a1, yz1, x1, and sh2). Partial sequence analysis of two haplotypes has revealed many single nucleotide polymorphisms and InDel polymorphisms, including several large structural polymorphisms. The physical positions of 101 meiotic recombination breakpoints are not distributed(More)
Time-resolved small-angle X-ray scattering (SAXS) with millisecond time-resolution reveals two discrete phases of global compaction upon Mg2+-mediated folding of the Tetrahymena thermophila ribozyme. Electrostatic relaxation of the RNA occurs rapidly and dominates the first phase of compaction during which the observed radius of gyration (R(g)) decreases(More)
Mitochondrial fission is essential for the degradation of damaged mitochondria. It is currently unknown how the dynamin-related protein 1 (DRP1)-associated fission machinery is selectively targeted to segregate damaged mitochondria. We show that PTEN-induced putative kinase (PINK1) serves as a pro-fission signal, independently of Parkin. Normally, the(More)
Double-stranded (ds) RNA, a common product of viral infection, can induce transcription of many cellular genes, including the 561 gene that encodes P56, a regulator of protein synthesis. Here, we report that induction of the 561 mRNA by exogenous dsRNA is mediated by Toll-like receptor 3 (TLR3), and it requires no new protein synthesis. Because gene(More)
Protein homeostasis (proteostasis) is essential for maintaining the functionality of the proteome. The disruption of proteostasis, due to genetic mutations or an age-related decline, leads to aberrantly folded proteins that typically lose their function. The accumulation of misfolded and aggregated protein is also cytotoxic and has been implicated in the(More)
ING proteins interact with core histones through their plant homeodomains (PHDs) and with histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes to alter chromatin structure. Here we identify a lamin interaction domain (LID) found only in ING proteins, through which they bind to and colocalize with lamin A. Lamin knockout (LMNA(-/-)) cells(More)
Zinc-finger recombinases (ZFRs) represent a potentially powerful class of tools for targeted genetic engineering. These chimeric enzymes are composed of an activated catalytic domain derived from the resolvase/invertase family of serine recombinases and a custom-designed zinc-finger DNA-binding domain. The use of ZFRs, however, has been restricted by(More)
BACKGROUND Ozanimod (RPC1063) is an oral agonist of the sphingosine-1-phosphate receptor subtypes 1 and 5 that induces peripheral lymphocyte sequestration, potentially decreasing the number of activated lymphocytes circulating to the gastrointestinal tract. METHODS We conducted a double-blind, placebo-controlled phase 2 trial of ozanimod in 197 adults(More)
Double-stranded (ds) RNA induces transcription of the 561 gene by activating IFN regulatory factor (IRF) transcription factors, whereas similar induction of the IFN-beta gene is thought to require additional activation of NFkappaB and AP-1. In mutant P2.1 cells, dsRNA failed to activate NFkappaB, IRF-3, p38, or c-Jun N-terminal kinase, and transcription of(More)