Learn More
To facilitate an understanding of auditory thalamocortical mechanisms, we have developed a mouse brain-slice preparation with a functional connection between the ventral division of the medial geniculate (MGv) and the primary auditory cortex (ACx). Here we present the basic characteristics of the slice in terms of physiology (intracellular and extracellular(More)
We have used the auditory thalamocortical slice to characterize thalamocortical transmission in primary auditory cortex (ACx) of the juvenile mouse. "Minimal" stimulation was used to activate medial geniculate neurons during whole cell recordings from regular-spiking (RS cells; mostly pyramidal) and fast-spiking (FS, putative inhibitory) neurons in ACx(More)
Auditory cortex neurons integrate information over a broad range of sound frequencies, yet it is not known how such integration is accomplished at the cellular or systems levels. Whereas information about frequencies near a neuron's characteristic frequency is likely to be relayed to the neuron by lemniscal thalamocortical inputs from the ventral division(More)
Stimulation of the medial geniculate body in an auditory thalamocortical slice elicits a short-latency current sink in the middle cortical layers, as would be expected following activation of thalamocortical relay neurons. However, corticothalamic neurons can have axon collaterals that project to the middle layers, thus, a middle-layer current sink could(More)
Calcium puffs are local Ca(2+) release events that arise from a cluster of inositol 1,4,5-trisphosphate receptor channels (IP(3)Rs) and serve as a basic "building block" from which global Ca(2+) waves are generated. Important questions remain as to the number of IP(3)Rs that open during a puff, their spatial distribution within a cluster, and how much(More)
The dopamine (DA) neurons in the ventral tegmental area and medial substantia nigra (VTA/mSN) projecting to the limbic forebrain and prefrontal cortex have long been postulated to play a major role in cognitive and behavioral effects of stress. In this study, the effects of a chronic stressor (prolonged exposure to cold) on the spontaneous activity of DA(More)
Auditory cortex contributes to the processing and perception of spectrotemporally complex stimuli. However, the mechanisms by which this is accomplished are not well understood. In this review, we examine evidence that single cortical neurons receive input covering much of the audible spectrum. We then propose an anatomical framework by which spectral(More)
Disturbances in the serotonergic system are considered to be implicated in the pathophysiology of depressive disorders. The possible role of the neurotrophic factor S100 beta, which is suspected to regulate regeneration of serotonergic synapses, has not been investigated in depressive disorders. The S100 beta concentration in the cerebrospinal fluid was(More)
The liberation of calcium ions sequestered in the endoplasmic reticulum through inositol 1,4,5-trisphosphate receptors/channels (IP(3)Rs) results in a spatiotemporal hierarchy of calcium signaling events that range from single-channel openings to local Ca(2+) puffs believed to arise from several to tens of clustered IP(3)Rs to global calcium waves. Using(More)
The detection of spectral variability of the γ-ray blazar Mrk 421 at TeV energies is reported. Observations with the Whipple Observatory 10 m γ-ray telescope taken in 2000/2001 revealed exceptionally strong and long-lasting flaring activity. Flaring levels of 0.4 to 13 times that of the Crab Nebula flux provided sufficient statistics for a detailed study of(More)