Learn More
Laboratory diagnosis for DNA repair diseases has been performed in western Europe from the early seventies for xeroderma pigmentosum (XP) and from the mid-eighties for Cockayne syndrome (CS) and trichothiodystrophy (TTD). The combined data from the DNA repair diagnostic centres in France, (West) Germany, Italy, the Netherlands and the United Kingdom have(More)
Xeroderma pigmentosum variant (XP-V) cells are deficient in their ability to synthesize intact daughter DNA strands after UV irradiation. This deficiency results from mutations in the gene encoding DNA polymerase eta, which is required for effecting translesion synthesis (TLS) past UV photoproducts. We have developed a simple cellular procedure to identify(More)
Numerous human disorders, including Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and trichothiodystrophy, result from the mutation of genes encoding molecules important for nucleotide excision repair. Here, we describe a syndrome in which the cardinal clinical features include short stature, hearing loss, premature aging, telangiectasia,(More)
Xeroderma pigmentosum (XP) is a rare DNA repair disorder characterized by increased susceptibility to UV radiation (UVR)-induced skin pigmentation, skin cancers, ocular surface disease, and, in some patients, sunburn and neurological degeneration. Genetically, it is assigned to eight complementation groups (XP-A to -G and variant). For the last 5 y, the UK(More)
BACKGROUND Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair mechanism in human cells. The final rejoining step requires DNA ligase IV (LIG4) together with the partner proteins X-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor. Patients with mutations in genes encoding LIG4, XRCC4-like factor, or the(More)
Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known(More)
Xeroderma pigmentosum (XP) is an autosomal recessive genetic disorder. Afflicted patients show extreme sun-sensitivity and skin cancer predisposition. XP is in most cases associated with deficient nucleotide excision repair (NER), which is the process responsible for removing photolesions from DNA. Measuring NER activity by nucleotide incorporation into(More)
Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are both rare autosomal recessive disorders with defects in DNA repair. They are usually distinct both clinically and genetically but in rare cases, patients exhibit the clinical characteristics of both diseases concurrently. We report two new phenotypically distinct cases of XP with additional features(More)