Learn More
The roles of FSH and androgen in the postnatal development of Sertoli cell number and function have been investigated using mice that lack FSH (FSHbetaKO), FSH-receptors (FSHRKO), or androgen receptors (Tfm). At birth and d 5, Sertoli cell number was normal in FSHRKO and FSHbetaKO mice, but was significantly reduced on d 20 and in adulthood. In contrast,(More)
We compare the chlorophyll fluorescence decay kinetics of the wild type and the D2-H117N mutant photosystem II reaction centers isolated from Chlamydomonas reinhardtii. The histidine residue located at site 117 on the D2 polypeptide of photosystem II is a proposed binding site for one of two peripheral accessory chlorophylls located in the reaction center(More)
In addition to the four chlorophylls (Chls) involved in primary charge separation, the photosystem II (PSII) reaction center polypeptides, D1 and D2, coordinate a pair of symmetry-related, peripheral accessory Chls. These Chls are axially coordinated by the D1-H118 and D2-H117 residues and are in close association with the proximal Chl antennae proteins,(More)
ACTH has been shown to stimulate androgen production by the fetal/neonatal mouse testis through the melanocortin type 2 receptor (MC2R). This study was designed to localize the expression of MC2R in the neonatal mouse testis and characterize the effects of ACTH on testicular androgen production. Using immunohistochemistry, MC2R was localized to the(More)
During testicular development, fetal and adult populations of Leydig cells arise sequentially. Previous studies have shown that androgen action is required for normal steroidogenic activity in the mouse testis. Therefore, to determine the role of androgens in regulating fetal and adult Leydig cell differentiation and function, Leydig development has been(More)
Fetal Leydig cells and fetal adrenocortical cells may share a common progenitor cell. Both cell types show several similarities, particularly in relation to their primary steroidogenic function. Differences in steroid secretion are largely due to the expression of 21-hydroxylase (CYP21A1) and 11beta-hydroxylase (CYP11B1) activity in the adrenal. To(More)
The beta-adrenoceptor antagonist [125I]cyanopindolol (CYP) was used to localize beta-adrenoceptors in sections of rabbit ear. Biochemical studies demonstrated that the binding was stereoselective, and that the beta-adrenoceptors are predominantly of the beta 2-subtype. Autoradiographic studies using 3H-Ultrofilm or nuclear emulsion coated coverslips showed(More)
  • 1