Learn More
HIV-1 protease (HIVp) is an important target for the development of therapies to treat AIDS and is one of the classic examples of structure-based drug design. The flap region of HIVp is known to be highly flexible and undergoes a large conformational change upon binding a ligand. Accurately modeling the inherent flexibility of the HIVp system is critical(More)
The HIV-1 integrase, which is essential for viral replication, catalyzes the insertion of viral DNA into the host chromosome, thereby recruiting host cell machinery into making viral proteins. It represents the third main HIV enzyme target for inhibitor design, the first two being the reverse transcriptase and the protease. Two 1-ns molecular dynamics(More)
Five nonpeptide, small-molecule inhibitors of the human MDM2-p53 interaction are presented, and each inhibitor represents a new scaffold. The most potent compound exhibited a Ki of 110 +/- 30 nM. These compounds were identified using our multiple protein structure (MPS) method which incorporates protein flexibility into a receptor-based pharmacophore model(More)
Heat shock protein 70 (Hsp70) is a highly conserved molecular chaperone that plays multiple roles in protein homeostasis. In these various tasks, the activity of Hsp70 is shaped by interactions with co-chaperones, such as Hsp40. The Hsp40 family of co-chaperones binds to Hsp70 through a conserved J-domain, and these factors stimulate ATPase and(More)
Structure-based drug design has become an essential tool for rapid lead discovery and optimization. As available structural information has increased, researchers have become increasingly aware of the importance of protein flexibility for accurate description of the native state. Typical protein-ligand docking efforts still rely on a single rigid receptor,(More)
The interaction between human p53 and MDM2 is a key event in controlling cell growth. Many studies have suggested that a p53 mimic would be sufficient to inhibit MDM2 to reduce cell growth in cancerous tissue. In order to design a potent p53 mimic, molecular dynamics (MD) simulations were used to examine the binding interface and the effect of mutating key(More)
The need to account for the dynamic behavior of a receptor has long been recognized as a complicating factor in computational drug design. The use of a single, rigid protein struc-ture— usually from a high-quality X-ray crystal structure— still is the standard in most applications (Zheng and Kyle, 1997; Walters et al., 1998). The choice to use a single(More)
We present the first receptor-based pharmacophore model for HIV-1 integrase. The development of "dynamic" pharmacophore models is a new method that accounts for the inherent flexibility of the active site and aims to reduce the entropic penalties associated with binding a ligand. Furthermore, this new drug discovery method overcomes the limitation of an(More)
Receptor flexibility must be incorporated into structure-based drug design in order to portray a more accurate representation of a protein in solution. Our approach is to generate pharmacophore models based on multiple conformations of a protein and is very similar to solvent mapping of hot spots. Previously, we had success using computer-generated(More)