Heather A. Carlson

Learn More
Accurate force fields are essential for reproducing the conformational and dynamic behavior of condensed-phase systems. The popular AMBER force field has parameters for monophosphates, but they do not extend well to polyphorylated molecules such as ADP and ATP. This work presents parameters for the partial charges, atom types, bond angles, and torsions in(More)
Binding MOAD (Mother of All Databases) is a database of 9836 protein-ligand crystal structures. All biologically relevant ligands are annotated, and experimental binding-affinity data is reported when available. Binding MOAD has almost doubled in size since it was originally introduced in 2004, demonstrating steady growth with each annual update. Several(More)
Many proteins contain flexible structures such as loops and hinged domains. A simple root mean square deviation (RMSD) alignment of two different conformations of the same protein can be skewed by the difference between the mobile regions. To overcome this problem, we have developed a novel method to overlay two protein conformations by their atomic(More)
As part of the Community Structure-Activity Resource (CSAR) center, a set of 343 high-quality, protein-ligand crystal structures were assembled with experimentally determined K(d) or K(i) information from the literature. We encouraged the community to score the crystallographic poses of the complexes by any method of their choice. The goal of the exercise(More)
We have recently presented a new pharmacophore design method that allows for the incorporation of the inherent flexibility of a target active site. The flexibility of the enzymatic system is described by collecting many conformations of the uncomplexed protein; this ensemble of conformational states can come from a molecular dynamics (MD) simulation,(More)
A major goal in drug design is the improvement of computational methods for docking and scoring. The Community Structure Activity Resource (CSAR) aims to collect available data from industry and academia which may be used for this purpose ( www.csardock.org ). Also, CSAR is charged with organizing community-wide exercises based on the collected data. The(More)
The Community Structure-Activity Resource (CSAR) recently held its first blinded exercise based on data provided by Abbott, Vertex, and colleagues at the University of Michigan, Ann Arbor. A total of 20 research groups submitted results for the benchmark exercise where the goal was to compare different improvements for pose prediction, enrichment, and(More)
The β-tropomyosin gene encodes a component of the sarcomeric thin filament. Rod-shaped dimers of tropomyosin regulate actin-myosin interactions and β-tropomyosin mutations have been associated with nemaline myopathy, cap myopathy, Escobar syndrome and distal arthrogryposis types 1A and 2B. In this study, we expand the allelic spectrum of(More)
A major goal in drug design is the improvement of computational methods for docking and scoring. The Community Structure Activity Resource (CSAR) has collected several data sets from industry and added in-house data sets that may be used for this purpose ( www.csardock.org). CSAR has currently obtained data from Abbott, GlaxoSmithKline, and Vertex and is(More)
The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for(More)