Learn More
Corynebacterium glutamicum ATCC13032 and Brevibacterium flavum JV16 were engineered for l-valine production by over-expressing ilvEBN r C genes at 31 °C in 72 h fermentation. Different strategies were carried out to reduce the by-products’ accumulation in l-valine fermentation and also to increase the availability of precursor for l-valine biosynthesis. The(More)
©2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Three-dimensional (3D) integration and multi-level cell (MLC) are two attractive technologies to achieve ultra-high density for mass storage applications. In this work, a three-layer 3D vertical AlOδ/Ta2O5-x/TaOy resistive random access memories were fabricated and characterized. The vertical cells in three layers show good uniformity and high performance(More)
Brevibacterium flavum ATCC14067 was engineered for l-valine production by overexpression of different ilv genes; the ilvEBNrC genes from B. flavum NV128 provided the best candidate for l-valine production. In traditional fermentation, l-valine production reached 30.08 ± 0.92 g/L at 31°C in 72 h with a low conversion efficiency of 0.129 g/g. To further(More)
Transmitter switching can provide resiliency and robustness to a communication system with multiple energy harvesting transmitters. However, excessive transmitter switching will bring heavy control overhead. In this paper, a geometric projection-based transmitter switching policy is proposed for a communication system with multiple energy harvesting(More)
There are two critical challenges which determine the array density of 3D RRAM: 1) the scaling limit in both horizontal and vertical directions; 2) the integration of selector devices in 3D structure. In this work, we present a novel 3D RRAM structure using low-dimensional materials, including 2D graphene and 1D carbon nanotube (CNT), as the edge(More)
AlGaN/GaN high electron mobility transistor (HEMT) structures were grown on 2 inch sapphire substrates by MOCVD, and 0.8-μm gate length devices were fabricated and measured. It is shown by resistance mapping that the HEMT structures have an average sheet resistance of approximately 380 Ω/sq with a uniformity of more than 96%. The 1-mm gate width devices(More)
Molybdenum disulfide (MoS2) has been attracting much attentions due to its excellent electrical and optical properties. We report here the synthesis of large-scale and uniform MoS2 nanosheets with vertically standing morphology using chemical vapor deposition method. TEM observations clearly reveal the growth mechanism of these vertical structures. It is(More)