Learn More
The subthalamic nucleus (STN) is a key nucleus in the basal ganglia motor circuit that provides the major glutamatergic excitatory input to the basal ganglia output nuclei. The STN plays an important role in normal motor function, as well as in pathological conditions such as Parkinson's disease (PD) and related disorders. Development of a complete(More)
The basal ganglia (BG) are a set of interconnected subcortical structures that play a critical role in motor control. The BG are thought to control movements by a delicate balance of transmission through two BG circuits that connect the input and output nuclei: the direct and the indirect pathways. The BG are also involved in a number of movement disorders.(More)
Loss of nigrostriatal dopaminergic neurons in Parkinson's disease (PD) leads to increased activity of glutamatergic neurons in the subthalamic nucleus (STN). Recent studies reveal that the resultant increase in STN-induced excitation of basal ganglia output nuclei is responsible for the disabling motor impairment characteristic of PD. On the basis of this,(More)
Our current understanding of the circuitry of the basal ganglia, and the pathophysiology of Parkinson's disease has led to major breakthroughs in the treatment of this debilitating movement disorder. Unfortunately, there are significant problems with the currently available pharmacological therapies that focus on dopamine replacement or dopaminergic(More)
This report, prepared in cooperation with the New England Transportation Consortium, does not constitute a standard, specification, or regulation. The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the views of the New England(More)
  • 1