Learn More
The theory of bifurcating vascular systems predicts vessel diameters that are related to optimality criteria like minimization of pumping energy or of building material. However, mechanisms for producing the postulated optimality have not been described so far, and quantitative data on bifurcation diameters during development are scarce. We used an(More)
We studied the early pattern of neural tube (NT) vascularization in quail embryos and chick-quail chimeras. Angioblasts appeared first in the dorsal third at Hamburger and Hamilton (HH) stage 19 as single, migrating cells. Their distribution did not correspond to a segmental pattern. After this initial dorsal immigration, endothelial sprouts invaded the NT(More)
We have studied the effect of VEGF(121) homodimer and VEGF(121/165) heterodimer on the chorioallantoic membrane (CAM) of 13-day-old chick embryos. The factors were applied in doses of 2-4 micrograms and the effects were evaluated macroscopically after 2 and 3 days. Histological studies were performed on semi- and ultrathin sections. Proliferation was(More)
In order to determine functional roles of basic fibroblast growth factor (FGF-2) in the peripheral nervous system we have analysed the expression of FGF-2 and FGF receptor 1 (FGFR1) in spinal ganglia and the sciatic nerve under normal conditions and after nerve crush using RNAse protection assay and in situ hybridization. In intact spinal ganglia, both(More)
The density and distribution of whole mount BrdU-anti-BrdU labeled endothelial cells (days 6-15) in the chick chorioallantoic membrane (CAM) was analyzed with computer-assisted microscopy. A significant loss of proliferative activity was noted after day 10: the density of labeled nuclei (in 10(-2) mm-2) decreased from a median 7.78 (days 6, 8, 10) to 2.42(More)
  • R Gödde, H Kurz
  • Developmental dynamics : an official publication…
  • 2001
The purpose of this report is to introduce a new computer model for the simulation of microvascular growth and remodeling into arteries and veins that imitates angiogenesis and blood flow in real vascular plexuses. A C++ computer program was developed based on geometric and biophysical initial and boundary conditions. Geometry was defined on a(More)
AIMS Homeobox (Hox) proteins are transcriptional regulators in embryonic patterning, cell differentiation, proliferation, and migration in vertebrates and invertebrates. A growing body of evidence suggests that Hox proteins are involved in endothelial cell regulation. We have shown earlier that HoxB5 upregulates vascular endothelial growth factor receptor-2(More)
Invasion of mesoderm-derived cells into the developing spinal cord and brain has been shown to produce early central nervous system (CNS) macrophage and microglia populations in avian embryos. A triplicate mode of entry has been proposed: through the endothelial wall of CNS blood vessels; from the ventricular cavities; and through the pial surface. Invasion(More)
During most instances of angiogenesis, not only are the capillaries or terminal vessels generated and modified, but the supplying vascular system is subjected to remodeling as well. Intussusception, i.e., transluminal pillar formation, is one essential mechanism for growth, arborization, bifurcation remodeling, and pruning. Complex and efficient vascular(More)
Angiogenesis is a key prerequisite for growth in all vertebrate embryos and in many tumors. Rapid growth requires efficient transport of oxygen and metabolites. Hence, for a better understanding of tissue growth, biophysical properties of vascular systems, in addition to their molecular mechanisms, need to be investigated. The purpose of this article is(More)