Hayden K. Webb

Learn More
Natural superhydrophobic surfaces are often thought to have antibiofouling potential due to their self-cleaning properties. However, when incubated on cicada wings, Pseudomonas aeruginosa cells are not repelled; instead they are penetrated by the nanopillar arrays present on the wing surface, resulting in bacterial cell death. Cicada wings are effective(More)
The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on its physical surface structure. As such, they provide a model for the development of novel functional surfaces that possess an increased resistance to bacterial(More)
A whitish Gram-negative, motile, aerobic bacterium, designated strain H 14(T), was isolated from seawater collected at St Kilda beach in Port Phillip Bay, Melbourne, Australia. Analysis of 16S rRNA gene sequences revealed that the organism belonged to the Roseobacter lineage of the class Alphaproteobacteria, forming a distinct evolutionary lineage at the(More)
A non-pigmented, motile, Gram-negative bacterium designated H 17T was isolated from a seawater sample collected in Port Phillip Bay (the Tasman Sea, Pacific Ocean). The new organism displayed optimal growth between 4 and 37 °C, was found to be neutrophilic and slightly halophilic, tolerating salt water environments up to 10 % NaCl. Strain H 17T was found to(More)
Black silicon is a synthetic nanomaterial that contains high aspect ratio nanoprotrusions on its surface, produced through a simple reactive-ion etching technique for use in photovoltaic applications. Surfaces with high aspect-ratio nanofeatures are also common in the natural world, for example, the wings of the dragonfly Diplacodes bipunctata. Here we show(More)
Substratum surface roughness is known to be one of the key factors in determining the extent of bacterial colonization. Understanding the way by which the substratum topography, especially at the nanoscale, mediates bacterial attachment remains ambiguous at best, despite the volume of work available on the topic. This is because the vast majority of(More)
Atomic force microscopy (AFM) is a technique that has long been employed in materials science, but is now increasingly being used in the biological sciences. AFM provides excellent topographical information on prokaryotic and eukaryotic cell surfaces, and the extracellular material produced by the cells. It helps to generate important data on the mechanical(More)
The wings of some insects, such as cicadae, have been reported to possess a number of interesting and unusual qualities such as superhydrophobicity, anisotropic wetting and antibacterial properties. Here, the chemical composition of the wings of the Clanger cicada (Psaltoda claripennis) were characterized using infrared (IR) microspectroscopy. In addition,(More)
The molecular organization of the epicuticle (the outermost layer) of insect wings is vital in the formation of the nanoscale surface patterns that are responsible for bestowing remarkable functional properties. Using a combination of spectroscopic and chromatographic techniques, including Synchrotron-sourced Fourier-transform infrared microspectroscopy(More)
While insect wings are widely recognised as multi-functional, recent work showed that this extends to extensive bactericidal activity brought about by cell deformation and lysis on the wing nanotopology. We now quantitatively show that subtle changes to this topography result in substantial changes in bactericidal activity that are able to span an order of(More)