Learn More
The identity of the transporter responsible for fructose absorption in the intestine in vivo and its potential role in fructose-induced hypertension remain speculative. Here we demonstrate that Glut5 (Slc2a5) deletion reduced fructose absorption by approximately 75% in the jejunum and decreased the concentration of serum fructose by approximately 90%(More)
The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly(More)
Pancreatic dysfunction in patients with cystic fibrosis (CF) is felt to result primarily from impairment of ductal HCO-3 secretion. We provide molecular evidence for the expression of NBC-1, an electrogenic Na+-HCO-3 cotransporter (NBC) in cultured human pancreatic duct cells exhibiting physiological features prototypical of CF duct fragments (CFPAC-1(More)
Activation of spermine/spermidine-N(1)-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl(4)). The expression and activity of SSAT(More)
Increased dietary fructose in rodents recapitulates many aspects of the Metabolic Syndrome with hypertension, insulin resistance and dyslipidemia. Here we show that fructose increased jejunal NaCl and water absorption which was significantly decreased in mice whose apical chloride/base exchanger Slc26a6 (PAT1, CFEX) was knocked out. Increased dietary(More)
The identities of the apical Cl-/base exchangers in kidney proximal tubule and cortical collecting duct (CCD) cells remain unknown. Pendrin (PDS), which is expressed at high levels in the thyroid and its mutation causes Pendred's syndrome, is shown to be an anion exchanger. We investigated the renal distribution of PDS and its function. Our results(More)
Several modes of HCO3- transport occur in the kidney, including Na+-independent Cl/HCO3- exchange (mediated by the AE family of Cl-/HCO3- exchangers), sodium-dependent Cl-/HCO3- exchange, and Na+:HCO3- cotransport. The functional similarities between the Na+-coupled HCO3- transporters and the AE isoforms (i.e. transport of HCO3- and sensitivity to(More)
The expression of catabolic enzymes spermidine/spermine N(1)-acetyltransferase (SSAT) and spermine oxidase (SMO) increases after ischemic reperfusion injury. We hypothesized that polyamine catabolism is upregulated and that this increase in catabolic response contributes to tissue damage in endotoxin-induced acute kidney injury (AKI). SSAT mRNA expression(More)
Potassium depletion (KD) causes renal chloride wasting, suggesting defect(s) in Cl- reabsorption in renal tubules. To determine whether alterations in expression of the major Cl- transporter genes might contribute to the chloride wasting, we analyzed their expression in renal cortex and medulla of animals placed on KD diet. Feeding KD diet to rats resulted(More)
BACKGROUND Studies have shown that glucocorticoids enhance HCO3- reabsorption in proximal tubules. Functional and molecular studies indicate that HCO3- reabsorption in proximal tubules is mediated via luminal H(+)-ATPase and Na+/H+ exchanger (NHE-3), and basolateral Na+:HCO3- cotransporter (NBC) acting in series. The purpose of these experiments was to(More)