Hassan Shibly

Learn More
A simplified, closed-form version of the basic mechanics of a driven rigid wheel on low-cohesion deformable terrain is presented. This approach allows the formulation of an on-line terrain parameter estimation algorithm, which has important applications for planetary exploration rovers. Analytical comparisons of the original and simplified equations are(More)
Future planetary exploration missions will require wheeled mobile robots ("rovers") to traverse very rough terrain with limited human supervision. Wheel-terrain interaction plays a critical role in rough-terrain mobility. In this paper, an online estimation method that identifies key terrain parameters using on-board robot sensors is presented. These(More)
Future planetary exploration missions will require rovers to traverse very rough terrain with limited human supervision. Wheel-terrain interaction plays a critical role in rough-terrain mobility. In this paper an on-line estimation method that identifies key terrain parameters using on-board rover sensors is presented. These parameters can be used for(More)
Future planetary exploration missions will require rovers to perform difficult tasks in rough terrain, with limited human supervision. Many current motion planning and control algorithms do not consider the physical characteristics of the rover and its environment, which limits their effectiveness in rough terrain. This paper presents an overview of(More)
  • 1