Harvey A Zambrano

Learn More
We study the thermophoretic motion of water nanodroplets confined inside carbon nanotubes using molecular dynamics simulations. We find that the nanodroplets move in the direction opposite the imposed thermal gradient with a terminal velocity that is linearly proportional to the gradient. The translational motion is associated with a solid body rotation of(More)
We conduct molecular dynamics simulations of a molecular linear motor consisting of coaxial carbon nanotubes with a long outer carbon nanotube confining and guiding the motion of an inner short, capsulelike nanotube. The simulations indicate that the motion of the capsule can be controlled by thermophoretic forces induced by thermal gradients. The(More)
Molecular dynamics simulations are conducted to investigate the initial stages of spontaneous imbibition of water in slit silica nanochannels surrounded by air. An analysis is performed for the effects of nanoscopic confinement, initial conditions of liquid uptake and air pressurization on the dynamics of capillary filling. The results indicate that the(More)
Since the 1990s, there has been a growing interest in developing microscale lab-on-a-chip systems for bio-detection, biotechnology, chemical and biological reactors, and medical, pharmaceutical, and environmental monitoring (Prakash et al. 2012; Swaminathan et al. 2012; Guan et al. 2014). The success of microfluidic lab-on-a-chip devices is due to the(More)
Graphene has attracted considerable attention due to its characteristics as a 2D material and its fascinating properties, providing a potential building block for nanofabrication. In nanochannels the solid-liquid interface plays a non-negligible role in determining the fluid dynamics. Therefore, for an optimal design of nanofluidic devices, a comprehensive(More)
Nanoscale capillarity has been extensively investigated; nevertheless, many fundamental questions remain open. In spontaneous imbibition, the classical Lucas-Washburn equation predicts a singularity as the fluid enters the channel consisting of an anomalous infinite velocity of the capillary meniscus. Bosanquet's equation overcomes this problem by taking(More)
Thermal Brownian motors (TBMs) are nanoscale machines that exploit thermal fluctuations to provide useful work. We introduce a TBM-based nanopump which enables continuous water flow through a carbon nanotube (CNT) by imposing an axial thermal gradient along its surface. We impose spatial asymmetry along the CNT by immobilizing certain points on its surface.(More)
Electroosmotic flow in a silica slit channel with nonuniform surface charge density is investigated. In nanoconfinement, the electrical double layer occupies a non-negligible fraction of the system. Therefore, modifying the charge density on specific locations on the channel wall surface allows effective manipulation of the electroosmotic flow rates. In the(More)
  • 1