Harutsugi Abukawa

Learn More
Trabecular bone is a material of choice for reconstruction after trauma and tumor resection and for correction of congenital defects. Autologous bone grafts are available in limited shapes and sizes; significant donor site morbidity is another major disadvantage to this approach. To overcome these limitations, we used a tissue engineering approach to create(More)
BACKGROUND Despite advances in surgical technique, reconstruction of a mandibular condyle still causes significant donor-site morbidity. The purpose of this study was to compare the effect of 3 different growth factors and define optimal cell culture conditions for bone marrow-derived progenitor cells to differentiate into chondrocytes for mandibular(More)
PURPOSE Cervical lymph node metastasis in oral squamous cell carcinoma (OSCC) is recognized as a poor prognostic factor, although its mechanism remains unclear. Recently, cyclo-oxygenase-2 (COX-2) level has been found to correlate highly with vascular endothelial growth factor C (VEGF-C) and lymph node metastasis, as in other solid tumors. However, there(More)
PURPOSE Nonsteroidal anti-inflammatory drugs are commonly prescribed to reduce inflammation and pain. However, little is known about the direct effect of these drugs on the differentiation of bone marrow-derived progenitor cells into osteoblasts. The purpose of this study was to determine the effect of ibuprofen on osteoblast differentiation and(More)
Tooth loss accompanied by alveolar bone resorption presents a significant clinical problem. We have investigated the utility of a tissue-engineering approach to provide corrective therapies for tooth-bone loss. Hybrid tooth-bone tissues were bioengineered as follows. Tooth implants were generated from pig third molar tooth bud cells seeded onto(More)
Tissue engineering has been proposed as an approach to alleviate the shortage of donor tissue and organs by combining cells and a biodegradable scaffold as a temporary extracellular matrix. While numerous scaffold fabrication methods have been proposed, tissue formation is typically limited to the surface of the scaffolds in bone tissue engineering(More)
PURPOSE Mandibular reconstructive procedures often produce significant donor site morbidity. Recently, the use of minimally invasive techniques has been reported for mandibular reconstruction with decreased morbidity at the primary operative site. To date, these techniques have not addressed the graft donor site. We hypothesize that tissue-engineering(More)
Proper rehabilitation of craniofacial defects is challenging because of the complexity of the anatomy and the component tissue types. The ability to simultaneously coordinate the regeneration of multiple tissues would make reconstruction more efficient and might reduce morbidity and improve outcomes. The craniofacial complex is unique because of the(More)
PURPOSE Current strategies for jaw reconstruction require multiple operations to replace bone and teeth. To improve on these methods, we investigated simultaneous mandibular and tooth reconstruction, using a Yucatan minipig model. MATERIALS AND METHODS Tooth and bone constructs were prepared from third molar tooth tissue and iliac-crest bone(More)
Bone remodeling plays an important role in bone function. To date, bone tissue-engineering research has focused primarily on bone formation from osteoblasts. This study demonstrates that osteoclastogenesis can occur on a mineralized polymer scaffold. Porcine bone marrow-derived mesenchymal stem cells (pMSCs) and hematopoietic cells were isolated from the(More)