Learn More
An osmosensing mechanism in the budding yeast (Saccharomyces cerevisiae) involves both a two-component signal transducer (Sln1p, Ypd1p and Ssk1p) and a MAP kinase cascade (Ssk2p/Ssk22p, Pbs2p, and Hog1p). The transmembrane protein Sln1p contains an extracellular sensor domain and cytoplasmic histidine kinase and receiver domains, whereas the cytoplasmic(More)
DLAR is a receptor-like, transmembrane protein-tyrosine phosphatase in Drosophila that is expressed almost exclusively by developing neurons. Analysis of Dlar loss-of-function mutations shows that DLAR plays a key role during motoneuron growth cone guidance. Segmental nerve b (SNb) motor axons normally exit the common motor pathway, enter the ventral target(More)
The stress-responsive p38 and JNK MAPK pathways regulate cell cycle and apoptosis. A human MAPKKK, MTK1 (= MEKK4), mediates activation of both p38 and JNK in response to environmental stresses. Using a yeast two-hybrid method, three related proteins, GADD45alpha (= GADD45), GADD45, (= MyD118), and GADD45gamma, were identified that bound to an N-terminal(More)
An appropriate response and adaptation to hyperosmolarity, i.e., an external osmolarity that is higher than the physiological range, can be a matter of life or death for all cells. It is especially important for free-living organisms such as the yeast Saccharomyces cerevisiae. When exposed to hyperosmotic stress, the yeast initiates a complex adaptive(More)
BACKGROUND Regulation of actin structures is instrumental in maintaining proper cytoarchitecture in many tissues. In the follicular epithelium of Drosophila ovaries, a system of actin filaments is coordinated across the basal surface of cells encircling the oocyte. These filaments have been postulated to regulate oocyte elongation; however, the molecular(More)
The yeast high osmolarity glycerol (HOG) signaling pathway can be activated by either of the two upstream pathways, termed the SHO1 and SLN1 branches. When stimulated by high osmolarity, the SHO1 branch activates an MAP kinase module composed of the Ste11 MAPKKK, the Pbs2 MAPKK, and the Hog1 MAPK. To investigate how osmostress activates this MAPK module, we(More)
Very little is known about how cellular osmosensors monitor changes in osmolarity of the environment. Here, we report that in yeast, Sln1 osmosensor histidine kinase monitors changes in turgor pressures. Reductions in turgor caused by either hyperosmotic stress, nystatin, or removal of cell wall activate MAPK Hog1 specifically through the SLN1 branch, but(More)
When confronted with environmental stress, cells either activate defence mechanisms to survive, or initiate apoptosis, depending on the type of stress. Certain types of stress, such as hypoxia, heatshock and arsenite (type 1 stress), induce cells to assemble cytoplasmic stress granules (SGs), a major adaptive defence mechanism. SGs are multimolecular(More)
Mammalian mitogen-activated protein kinase (MAPK) cascades control various cellular events, ranging from cell growth to apoptosis, in response to external stimuli. A conserved docking site, termed DVD, is found in the mammalian MAP kinase kinases (MAPKKs) belonging to the three major subfamilies, namely MEK1, MKK4/7, and MKK3/6. The DVD sites bind to their(More)
Functional interactions between a mitogen-activated protein kinase (MAPK) and its regulators require specific docking interactions. Here, we investigated the mechanism by which the yeast osmoregulatory Hog1 MAPK specifically interacts with its activator, the MAPK kinase Pbs2, and its major inactivator, the protein phosphatase Ptp2. We found, in the(More)