Learn More
An osmosensing mechanism in the budding yeast (Saccharomyces cerevisiae) involves both a two-component signal transducer (Sln1p, Ypd1p and Ssk1p) and a MAP kinase cascade (Ssk2p/Ssk22p, Pbs2p, and Hog1p). The transmembrane protein Sln1p contains an extracellular sensor domain and cytoplasmic histidine kinase and receiver domains, whereas the cytoplasmic(More)
An appropriate response and adaptation to hyperosmolarity, i.e., an external osmolarity that is higher than the physiological range, can be a matter of life or death for all cells. It is especially important for free-living organisms such as the yeast Saccharomyces cerevisiae. When exposed to hyperosmotic stress, the yeast initiates a complex adaptive(More)
DLAR is a receptor-like, transmembrane protein-tyrosine phosphatase in Drosophila that is expressed almost exclusively by developing neurons. Analysis of Dlar loss-of-function mutations shows that DLAR plays a key role during motoneuron growth cone guidance. Segmental nerve b (SNb) motor axons normally exit the common motor pathway, enter the ventral target(More)
BACKGROUND Advances in imaging techniques have increased the recognition of aortic intramural hematomas (IMHs) and penetrating atherosclerotic ulcers (PAUs); however, distinction between IMH and PAU remains unclear. We intended to clarify differences between IMH coexisting with PAU and IMH not associated with PAU by comparisons of clinical features, imaging(More)
The stress-responsive p38 and JNK MAPK pathways regulate cell cycle and apoptosis. A human MAPKKK, MTK1 (= MEKK4), mediates activation of both p38 and JNK in response to environmental stresses. Using a yeast two-hybrid method, three related proteins, GADD45alpha (= GADD45), GADD45, (= MyD118), and GADD45gamma, were identified that bound to an N-terminal(More)
The yeast high osmolarity glycerol (HOG) signaling pathway can be activated by either of the two upstream pathways, termed the SHO1 and SLN1 branches. When stimulated by high osmolarity, the SHO1 branch activates an MAP kinase module composed of the Ste11 MAPKKK, the Pbs2 MAPKK, and the Hog1 MAPK. To investigate how osmostress activates this MAPK module, we(More)
To cope with life-threatening high osmolarity, yeast activates the high-osmolarity glycerol (HOG) signaling pathway, whose core element is the Hog1 MAP kinase cascade. Activated Hog1 regulates the cell cycle, protein translation, and gene expression. Upstream of the HOG pathway are functionally redundant SLN1 and SHO1 signaling branches. However, neither(More)
Avulsive cortical irrgularity, a benign condition occurring only among children and adolescents, has been known to simulate malignancy not only radiologically but also microscopically. Therefore, in addition to plain radiographs, further studies including by magnetic resonance (MR) imaging may occasionally be required. MR images of seven cases of avulsive(More)
OBJECTIVE The aim of our study was to evaluate the efficacy of MDCT angiography in the assessment of lower limb peripheral arterial occlusive disease. MATERIALS AND METHODS Twenty-four patients (representing 27 cases) with symptomatic lower extremity peripheral arterial occlusive disease underwent both MDCT angiography and digital subtraction angiography(More)
When confronted with environmental stress, cells either activate defence mechanisms to survive, or initiate apoptosis, depending on the type of stress. Certain types of stress, such as hypoxia, heatshock and arsenite (type 1 stress), induce cells to assemble cytoplasmic stress granules (SGs), a major adaptive defence mechanism. SGs are multimolecular(More)