Learn More
An osmosensing mechanism in the budding yeast (Saccharomyces cerevisiae) involves both a two-component signal transducer (Sln1p, Ypd1p and Ssk1p) and a MAP kinase cascade (Ssk2p/Ssk22p, Pbs2p, and Hog1p). The transmembrane protein Sln1p contains an extracellular sensor domain and cytoplasmic histidine kinase and receiver domains, whereas the cytoplasmic(More)
An appropriate response and adaptation to hyperosmolarity, i.e., an external osmolarity that is higher than the physiological range, can be a matter of life or death for all cells. It is especially important for free-living organisms such as the yeast Saccharomyces cerevisiae. When exposed to hyperosmotic stress, the yeast initiates a complex adaptive(More)
To cope with life-threatening high osmolarity, yeast activates the high-osmolarity glycerol (HOG) signaling pathway, whose core element is the Hog1 MAP kinase cascade. Activated Hog1 regulates the cell cycle, protein translation, and gene expression. Upstream of the HOG pathway are functionally redundant SLN1 and SHO1 signaling branches. However, neither(More)
DLAR is a receptor-like, transmembrane protein-tyrosine phosphatase in Drosophila that is expressed almost exclusively by developing neurons. Analysis of Dlar loss-of-function mutations shows that DLAR plays a key role during motoneuron growth cone guidance. Segmental nerve b (SNb) motor axons normally exit the common motor pathway, enter the ventral target(More)
The yeast high osmolarity glycerol (HOG) signaling pathway can be activated by either of the two upstream pathways, termed the SHO1 and SLN1 branches. When stimulated by high osmolarity, the SHO1 branch activates an MAP kinase module composed of the Ste11 MAPKKK, the Pbs2 MAPKK, and the Hog1 MAPK. To investigate how osmostress activates this MAPK module, we(More)
The stress-responsive p38 and JNK MAPK pathways regulate cell cycle and apoptosis. A human MAPKKK, MTK1 (= MEKK4), mediates activation of both p38 and JNK in response to environmental stresses. Using a yeast two-hybrid method, three related proteins, GADD45alpha (= GADD45), GADD45, (= MyD118), and GADD45gamma, were identified that bound to an N-terminal(More)
Leukocyte antigen-related protein (LAR) is a prototype for a family of transmembrane protein tyrosine phosphatases whose extracellular domain is composed of three Ig and several fibronectin type III (FnIII) domains. Complex alternative splicing of the LAR-FnIII domains 4-8 has been observed. The extracellular matrix laminin-nidogen complex was identified as(More)
The budding yeast Saccharomyces cerevisiae has at least five signal pathways containing a MAP kinase (MAPK) cascade. The high osmolarity glycerol (HOG) MAPK pathway is essential for yeast survival in high osmolarity environment. This mini-review surveys recent developments in regulation of the HOG pathway with specific emphasis on the roles of protein(More)
Transforming growth factor-beta (TGF-beta), when bound to its specific receptor, activates the transcription factor Smad by phosphorylation. TGF-beta also activates the p38 MAPK pathway, but there seem to be disparate mechanisms for the early p38 activation and delayed p38 activation. In this report, we demonstrate that Smad-dependent expression of(More)
A bacteriophage T7 mutation, HS9, is phenotypically defective in gene 1.2, although it maps outside the gene. The single nucleotide change responsible for the HS9 mutation lies within the RNAase III recognition site immediately following gene 1.2. This RNAase III recognition site, responsible for the processing of the mRNA encoding genes 1.1 and 1.2,(More)