Haruka Imada

Learn More
BACKGROUND In animal groups such as herds, schools, and flocks, a certain distance is maintained between adjacent individuals, allowing them to move as a cohesive unit. Proximate causations of the cohesive and coordinated movement under dynamic conditions, however, have been poorly understood. METHODOLOGY/PRINCIPAL FINDINGS We established a novel and(More)
Cell proliferation in the adult mammalian brain is maintained at a low rate, but cell proliferation in the adult fish brain is prominent. To compare the distribution of proliferating cells among fish species, mutants, and under different growing environments, we mapped the zones of cell proliferation in the adult medaka (Oryzias latipes) brain and(More)
Social familiarity affects mating preference among various vertebrates. Here, we show that visual contact of a potential mating partner before mating (visual familiarization) enhances female preference for the familiarized male, but not for an unfamiliarized male, in medaka fish. Terminal-nerve gonadotropin-releasing hormone 3 (TN-GnRH3) neurons, an(More)
Neuropeptides have important roles in modulating behavioral patterns such as social interaction. With the aim to determine the presence of neuropeptides known to be involved in social interaction as well as novel peptides, we used MALDI-TOF/MS to analyze neuropeptide profiles in some medaka brain regions. In the telencephalon, hypothalamus, and pituitary(More)
Immediate-early genes (IEGs) are useful for mapping active brain regions in various vertebrates. Here we identified a c-fos homologue gene in medaka and demonstrated that the amounts of c-fos transcripts and proteins in the medaka brain increased in relation to an artificially evoked seizure, suggesting that the homologue gene has the characteristics of(More)
Herein, we describe the discovery of a potent, selective, brain-penetrating, in vivo active phosphodiesterase (PDE) 2A inhibitor lead series. To identify high-quality leads suitable for optimization and enable validation of the physiological function of PDE2A in vivo, structural modifications of the high-throughput screening hit 18 were performed. Our lead(More)
Phosphodiesterase (PDE) 2A inhibitors have emerged as a novel mechanism with potential therapeutic option to ameliorate cognitive dysfunction in schizophrenia or Alzheimer's disease through upregulation of cyclic nucleotides in the brain and thereby achieve potentiation of cyclic nucleotide signaling pathways. This article details the expedited optimization(More)
  • 1