Hartmut B. Stegmann

Learn More
The intensity of ESR spectrum associated with ascorbyl free radical (A.) was found to be sensitive to various pathologies and intoxications connected with oxidative stress. For this reason, A. has been suggested to be used as a natural noninvasive ESR indicator of oxidative stress. To specify factors controlling [A.] in biological tissues, the kinetic study(More)
One-electron reduction of quinones (Q) by ascorbate (AscH ); (1) AscH + Q --> Q*- + Asc*- + H+, followed by the oxidation of semiquinone (Q*-) by molecular oxygen; (2) Q*- + O2 --> Q + O2*-, results in the catalytic oxidation of ascorbate (with Q as a catalyst) and formation of active forms of oxygen. Along with enzymatic redox cycling of Q. this process(More)
6-Hydroxydopamine (6-OHDA) has been used for lesioning catecholaminergic neurons and attempted purging of neuroblastoma cells from hematopoietic stem cells in autologous bone marrow transplantation (ABMT). Neurotoxicity is mediated primarily by reactive oxygen species. In ABMT, 6-OHDA, as a purging agent, has been unsuccessful. At physiological pH it(More)
Ferritin is the main intracellular iron storage protein. Ferritin iron may be released by many reducing agents including ascorbate. In this work we report ferritin to catalyze the oxidation of ascorbate. The kinetics of this process were studied in detail in phosphate buffer (pH 7.40), at 37 degrees C by using the Clark electrode technique and ESR. The(More)
Chronic lung disease (CLD) is a major cause of long term morbidity in preterm infants. Reactive oxygen species (ROS) play an important role in the pathogenesis of CLD. We show that a high percentage (63 to 83%) of the investigated bronchoalveolar secretions (BAS) of neonates contain bleomycin-detectable free iron concentrations (0. 04-0.124 nmol/micrograms(More)
Redox cycling is believed to be the most general molecular mechanism of quinone (Q) cytotoxicity. Along with redox cycling induced by a reductase, a similar process is known to occur via electron transfer from ascorbate (AscH-) to Q with formation of a semiquinone radical (Q.-): (1) Q + AscH- (k1)--> Q.- + Asc.- + H+ (2) Q.- + O2 --> Q + O2.-. The net(More)
EPR investigations o f spruce needles under in vivo conditions are capable o f the detection of several radicals attributed to the plant photosystem. Furthermore, at room temperature an absorption due to ascorbic acid radical and other paramagnetic oxidation products can be de­ tected additionally in the dark-adapted needles as well as under illumination. A(More)
Treatment of leaves of spinach, corn, and peas with the herbicides paraquat, amitrole or acifluorfen leads to oxidative stress resulting in a light driven drastically increased production of ascorbic acid radical (monodehydroascorbic acid, MDAA) which could be demonstrated by in vivo EPR analysis. A discrimination of the M DAA formation between the action(More)
BACKGROUND 6-Hydroxydopamine (6-OHDA) was used for ex vivo purging of bone marrow from neuroblastoma cells before autologous transplantation. However, this concept failed because of the rapid autoxidation of 6-OHDA, which leads to the generation of cytotoxic reactive oxygen species (ROS), mainly in the incubation medium before 6-OHDA can be incorporated by(More)
ESR-spectra were recorded during the oxidation of N-acetyldopamine and N-ß-alanyldopamine in aqueous solutions. Semiquinone radicals were detected under conditions of spin stabilization by Zn2+ ions. The appearance of the spectra was the same in the presence or in the absence of proteins. No evidence was obtained for the formation of products that could(More)