Harry J Mcardle

Learn More
Maternal iron deficiency during pregnancy induces anaemia in the developing fetus; however, the severity tends to be less than in the mother. The mechanism underlying this resistance has not been determined. We have measured placental expression of proteins involved in iron transfer in pregnant rats given diets with decreasing levels of iron and examined(More)
We previously detected a membrane-bound, copper-containing oxidase that may be involved in iron efflux in BeWo cells, a human placental cell line. We have now identified a gene encoding a predicted multicopper ferroxidase (MCF) with a putative C-terminal membrane-spanning sequence and high sequence identity to hephaestin (Heph) and ceruloplasmin (Cp), the(More)
Iron metabolism during pregnancy is biased toward maintaining the fetal supply, even at the cost of anemia in the mother. The mechanisms regulating this are not well understood. Here, we examine iron deficiency and supplementation on the hierarchy of iron supply and the gene expression of proteins that regulate iron metabolism in the rat. Dams were fed(More)
Iron (Fe) deficiency anaemia during pregnancy results in an increased risk of perinatal mortality and morbidity and is a significant factor for increased risk of disease in later life. Consequently we have developed a rat model to study the relationship between maternal Fe deficiency and postnatal growth and blood pressure in the offspring. Weanlings were(More)
Cu is an essential nutrient for man, but can be toxic if intakes are too high. In sensitive populations, marginal over- or under-exposure can have detrimental effects. Malnourished children, the elderly, and pregnant or lactating females may be susceptible for Cu deficiency. Cu status and exposure in the population can currently not be easily measured, as(More)
The mechanism of zinc (Zn) uptake by microvillous membrane vesicles prepared from human term placenta has been studied. The uptake was complex, with two processes being identified. In the first process, uptake was rapid, reaching equilibrium within 2 min, and was temperature dependent, with a Q10 of 1.5. Equilibrium Zn levels were sensitive to osmotic(More)
The intravesicular pH of intact rabbit reticulocytes was measured by two methods; one based on the intracellular:extracellular distribution of DMO (5, 5, dimethyl + oxazolidin-2,4-dione), methylamine, and chloroquine and the other by quantitative fluorescence microscopy of cell-bound transferrin. The latter method was also applied to nucleated erythroid(More)
Trans-placental transport of amino acids is vital for the developing fetus. Using the BeWo cell line as a placental model, we investigated the effect of restricting amino acid availability on amino acid transport system type A. BeWo cells were cultured either in amino acid-depleted (without non-essential amino acids) or control media for 1, 3, 5 or 6 h.(More)
BACKGROUND Estrogen and progesterone regulate alpha, beta, and gamma amiloride-sensitive epithelial sodium channel (ENaC) subunit mRNA levels in female rat kidney. Renal Na(+) handling differs between males and females. Further, within females Na(+) metabolism changes during the menstrual cycle and pregnancy. Electrolyte homeostasis and extracellular fluid(More)
Cu and Fe metabolism are known to be linked, but the interactions during pregnancy are less well studied. In the present study we used rats to examine the effect of Cu deficiency during pregnancy on Fe and Cu levels in maternal and fetal tissue and on the gene expression profile of proteins involved in Cu and Fe metabolism in the placenta. Rats were fed(More)