Learn More
Thioflavine T (ThT) associates rapidly with aggregated fibrils of the synthetic beta/A4-derived peptides beta(1-28) and beta(1-40), giving rise to a new excitation (ex) (absorption) maximum at 450 nm and enhanced emission (em) at 482 nm, as opposed to the 385 nm (ex) and 445 nm (em) of the free dye. This change is dependent on the aggregated state as(More)
Absorption of a photon of light by rhodopsin triggers mechanisms responsible for excitation as well as regulation of the phototransduction cascade. Arrestins are a family of proteins that appear to be responsible for terminating the active state of G-protein-coupled receptors. One of the major substrates of light-dependent phosphorylation in the visual(More)
Aged nonhuman primates accumulate large amounts of human-sequence amyloid β (Aβ) in the brain, yet they do not manifest the full phenotype of Alzheimer's disease (AD). To assess the biophysical properties of Aβ that might govern its pathogenic potential in humans and nonhuman primates, we incubated the benzothiazole imaging agent Pittsburgh Compound B (PIB)(More)
Although viral propagation is a localized process, mathematical models of viral replication kinetics have been limited to systems of ordinary differential equations describing spatially averaged behavior. In this paper, we introduce a cellular automaton model of viral propagation based on the known biophysical properties of HIV. In particular, we include(More)
Alzheimer's disease (AD) pathogenesis is widely believed to be driven by the production and deposition of the amyloid-beta peptide (Abeta). For many years, investigators have been puzzled by the weak to nonexistent correlation between the amount of neuritic plaque pathology in the human brain and the degree of clinical dementia. Recent advances in our(More)
Upon activation by calcineurin, the nuclear factor of activated T-cells (NFAT) translocates to the nucleus and guides the transcription of numerous molecules involved in inflammation and Ca(2+) dysregulation, both of which are prominent features of Alzheimer's disease (AD). However, NFAT signaling in AD remains relatively uninvestigated. Using isolated(More)
Deposition of the amyloid-β (Aβ) peptide in senile plaques and cerebral Aβ angiopathy (CAA) can be stimulated in Aβ-precursor protein (APP)-transgenic mice by the intracerebral injection of dilute brain extracts containing aggregated Aβ seeds. Growing evidence implicates a prion-like mechanism of corruptive protein templating in this phenomenon, in which(More)
With advancing age, the brain becomes increasingly susceptible to neurodegenerative diseases, most of which are characterized by the misfolding and errant aggregation of certain proteins. The induction of aggregation involves a crystallization-like seeding mechanism by which a specific protein is structurally corrupted by its misfolded conformer. The latest(More)
Ultrastructural reconstruction of 27 fibrillar plaques in different stages of formation and maturation was undertaken to characterize the development of fibrillar plaques in the brains of human APP(SW) transgenic mice (Tg2576). The study suggests that microglial cells are not engaged in Abeta removal and plaque degradation, but in contrast, are a driving(More)
Radiolabeled Pittsburgh compound B (PIB) is a benzothiazole imaging agent that usually binds with high affinity, specificity, and stoichiometry to cerebral beta-amyloid (Abeta) in patients with Alzheimer's disease. Among a cohort of ten AD subjects examined postmortem, we describe a case of idiopathic, end-stage Alzheimer's disease with heavy Abeta(More)