Harry E Milton

Learn More
A multigrid computational model has been developed to assess the performance of refractive liquid crystal lenses, which is up to 40 times faster than previous techniques. Using this model, the optimum geometries producing an ideal parabolic voltage distribution were deduced for refractive liquid crystal lenses with diameters from 1 to 9 mm. The ratio of(More)
Presbyopia, the age-related reduction in near vision acuity, is one of the leading issues facing the contact lens industry due to an increasingly ageing population and limitations associated with existing designs. A plastic-based liquid crystal contact lens is described which is designed to allow switchable vision correction. The device is characterized by(More)
The superlatives of graphene cover a whole range of properties: electrical, chemical, mechanical, thermal and others. These special properties earn graphene a place in current or future applications. Here we demonstrate one such application - adaptive contact lenses based on liquid crystals, where simultaneously the high electrical conductivity,(More)
Liquid crystal (LC) contact lenses are emerging as an exciting technology for vision correction. A homeotropically (vertical) aligned LC lens is reported that offers improved optical quality and simplified construction techniques over previously reported LC contact lens designs. The lens has no polarization dependence in the off state and produces a(More)
Liquid crystal lenses are an emerging technology that can provide variable focal power in response to applied voltage. Many designs for liquid-crystal-based lenses are polarization dependent, so that 50% of light is not focused as required, making polarization-independent technologies very attractive. Recently, the dark conglomerate (DC) phase, which is an(More)
  • 1