Learn More
High-resolution, three-dimensional structures of the archetypal glycoside hydrolase family 16 (GH16) endo-xyloglucanases Tm-NXG1 and Tm-NXG2 from nasturtium (Tropaeolum majus) have been solved by x-ray crystallography. Key structural features that modulate the relative rates of substrate hydrolysis to transglycosylation in the GH16 xyloglucan-active enzymes(More)
Xyloglucan transglycosylases (XETs) have been implicated in many aspects of cell wall biosynthesis, but their function in vascular tissues, in general, and in the formation of secondary walls, in particular, is less well understood. Using an in situ XET activity assay in poplar stems, we have demonstrated XET activity in xylem and phloem fibers at the stage(More)
The large Glycoside Hydrolase family 5 (GH5) groups together a wide range of enzymes acting on β-linked oligo- and polysaccharides, and glycoconjugates from a large spectrum of organisms. The long and complex evolution of this family of enzymes and its broad sequence diversity limits functional prediction. With the objective of improving the differentiation(More)
Xyloglucan endotransglycosylases (XETs) cleave and religate xyloglucan polymers in plant cell walls via a transglycosylation mechanism. Thus, XET is a key enzyme in all plant processes that require cell wall remodeling. To provide a basis for detailed structure–function studies, the crystal structure of Populus tremula x tremuloides XET16A (PttXET16A),(More)
The cDNA encoding a xyloglucan endotransglycosylase, PttXET16A, from hybrid aspen (Populus tremulaxtremuloides) has been isolated from an expressed sequence tag library and expressed in the methylotrophic yeast Pichia pastoris. Sequence analysis indicated a high degree of similarity with other proteins in the XTH (xyloglucan transglycosylase/hydrolase) gene(More)
BACKGROUND The microbes Escherichia coli and Pichia pastoris are convenient prokaryotic and eukaryotic hosts, respectively, for the recombinant production of proteins at laboratory scales. A comparative study was performed to evaluate a range of constructs and process parameters for the heterologous intra- and extracellular expression of genes encoding the(More)
A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex(More)
A novel class of nonionic, carbohydrate-based surfactants has been synthesized from the plant polysaccharide xyloglucan. Enzymatic hydrolysis of xyloglucan yielded a series of well-defined, highly branched oligosaccharides that, following reductive amination, were readily conjugated with fatty acids bearing C8 to C18 chains under mild conditions. The(More)
Xyloglucan endotransglucosylase/hydrolases (XTHs) are cell wall enzymes that are able to graft xyloglucan chains to oligosaccharides or to other available xyloglucan chains and/or to hydrolyse xyloglucan chains. As they are involved in the modification of the load-bearing cell-wall components, they are believed to be very important in the regulation of(More)
Cellulose constitutes an important raw material for many industries. However, the superb load-bearing properties of cellulose are accompanied by poor chemical reactivity. The hydroxyl groups on cellulose surfaces can be reacted but usually not without loss of fiber integrity and strength. Here, we describe a novel chemoenzymatic approach for the efficient(More)