Learn More
Antibody-based proteomics provides a powerful approach for the functional study of the human proteome involving the systematic generation of protein-specific affinity reagents. We used this strategy to construct a comprehensive, antibody-based protein atlas for expression and localization profiles in 48 normal human tissues and 20 different cancers. Here we(More)
High-resolution, three-dimensional structures of the archetypal glycoside hydrolase family 16 (GH16) endo-xyloglucanases Tm-NXG1 and Tm-NXG2 from nasturtium (Tropaeolum majus) have been solved by x-ray crystallography. Key structural features that modulate the relative rates of substrate hydrolysis to transglycosylation in the GH16 xyloglucan-active enzymes(More)
Tension wood is a specialized tissue of deciduous trees that functions in bending woody stems to optimize their position in space. Tension wood fibers that develop on one side of the stem have an increased potency to shrink compared with fibers on the opposite side, thus creating a bending moment. It is believed that the gelatinous (G) cell wall layer(More)
Xyloglucan transglycosylases (XETs) have been implicated in many aspects of cell wall biosynthesis, but their function in vascular tissues, in general, and in the formation of secondary walls, in particular, is less well understood. Using an in situ XET activity assay in poplar stems, we have demonstrated XET activity in xylem and phloem fibers at the stage(More)
The large Glycoside Hydrolase family 5 (GH5) groups together a wide range of enzymes acting on β-linked oligo- and polysaccharides, and glycoconjugates from a large spectrum of organisms. The long and complex evolution of this family of enzymes and its broad sequence diversity limits functional prediction. With the objective of improving the differentiation(More)
Use of extracts from Moringa oleifera (MO) is of great interest for low-cost water treatment. This paper discusses water and salt extraction of a coagulant protein from the seed, purification using ion exchange, its chemical characteristics, coagulation and antimicrobial properties. The coagulant from both extracts is a cationic protein with pI greater than(More)
KORRIGAN1 (KOR1) is a membrane-bound cellulase implicated in cellulose biosynthesis. PttCel9A1 from hybrid aspen (Populus tremula L. x tremuloides Michx.) has high sequence similarity to KOR1 and we demonstrate here that it complements kor1-1 mutants, indicating that it is a KOR1 ortholog. We investigated the function of PttCel9A1/KOR1 in Arabidopsis(More)
The recent years have witnessed considerable developments in the interpretation of the three-dimensional structures of plant polysaccharide-degrading enzymes in the context of their functional specificity. A plethora of new structures of catalytic, carbohydrate-binding and protein-scaffolding modules involved in (hemi)cellulose catabolism has emerged in(More)
The plant cell wall is a complex material in which the cellulose microfibrils are embedded within a mesh of other polysaccharides, some of which are loosely termed "hemicellulose." One such hemicellulose is xyloglucan, which displays a beta-1,4-linked d-glucose backbone substituted with xylose, galactose, and occasionally fucose moieties. Both xyloglucan(More)