Learn More
Multiple somatic rearrangements are often found in cancer genomes; however, the underlying processes of rearrangement and their contribution to cancer development are poorly characterized. Here we use a paired-end sequencing strategy to identify somatic rearrangements in breast cancer genomes. There are more rearrangements in some breast cancers than(More)
Understanding the key process of human mutation is important for many aspects of medical genetics and human evolution. In the past, estimates of mutation rates have generally been inferred from phenotypic observations or comparisons of homologous sequences among closely related species. Here, we apply new sequencing technology to measure directly one(More)
In this paper, the design and characterization of batch fabricated metallic micromachined pipette arrays is described. The process used to fabricate the micromachined pipette arrays (MPA) includes p+ etch-stop membrane technology, anisotropic etching of silicon in potassium hydroxide, sacrificial thick photoresist micromolding technology, and(More)
Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or(More)
  • Thomas J Hudson, Warwick Anderson, Axel Artez, Anna D Barker, Cindy Bell, Rosa R Bernabé +254 others
  • 2010
The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the(More)
We have investigated whether regions of the genome showing signs of positive selection in scans based on haplotype structure also show evidence of positive selection when sequence-based tests are applied, whether the target of selection can be localized more precisely, and whether such extra evidence can lead to increased biological insights. We used two(More)
  • 1