Harold A. Weaver

Learn More
Europa, the second large satellite out from Jupiter, is roughly the size of Earth's Moon, but unlike the Moon, it has water ice on its surface. There have been suggestions that an oxygen atmosphere should accumulate around such a body, through reactions which break up the water molecules and form molecular hydrogen and oxygen. The lighter H2 molecules would(More)
Pluto's first known satellite, Charon, was discovered in 1978. It has a diameter (approximately 1,200 km) about half that of Pluto, which makes it larger, relative to its primary, than any other moon in the Solar System. Previous searches for other satellites around Pluto have been unsuccessful, but they were not sensitive to objects less, similar150 km in(More)
On 4 July 2005, many observatories around the world and in space observed the collision of Deep Impact with comet 9P/Tempel 1 or its aftermath. This was an unprecedented coordinated observational campaign. These data show that (i) there was new material after impact that was compositionally different from that seen before impact; (ii) the ratio of dust mass(More)
The Hubble Space Telescope made systematic observations of the split comet P/Shoemaker-Levy 9 (SL9) (P designates a periodic comet) starting in July 1993 and continuing through mid-July 1994 when the fragments plunged into Jupiter's atmosphere. Deconvolutions of Wide Field Planetary Camera images indicate that the diameters of some fragments may have been(More)
The two newly discovered satellites of Pluto (P1 and P2) have masses that are small compared to both Pluto and Charon-that is, between 5 x 10(-4) and 1 x 10(-5) of Pluto's mass, and between 5 x 10(-3) and 1 x 10(-4) of Charon's mass. This discovery, combined with the constraints on the absence of more distant satellites of Pluto, reveal that Pluto and its(More)
Analysis of Hubble Space Telescope (HST) images of comet Hale-Bopp (C/1995 O1) suggests that the effective diameter of the nucleus is between 27 to 42 kilometers, which is at least three times larger than that of comet P/Halley. The International Ultraviolet Explorer and HST spectra showed emissions from OH (a tracer of H2O) and CS (a tracer of CS2)(More)
The nucleus of comet 19P/Borrelly was detected using the Planetary Camera (WFPC2) of the Hubble Space Telescope (HST). During the time of our observations, the comet was 0.62 AU from the Earth, 1.40 AU from the Sun, and had a solar phase angle of 38 •. The high spatial resolution of the HST images allowed us to discriminate clearly between the signal from(More)
Context. Following the postponement of the launch of the Rosetta spacecraft scheduled in January 2003, comet 67P/Churyumov-Gerasimenko emerged as the most suitable new target. However a critical issue was the size, that is, the mass of its nucleus, as the surface module Philae was designed to land on a nucleus with a radius no larger than approximately 1.5(More)
Observations of Pluto and its solar-tidal stability zone were made using the as discussed by Weaver et al. (2006) and Stern et al. (2006a). Confirming observations of the newly discovered moons were obtained using the ACS in the High Resolution Channel (HRC) mode on 2006 Feb 15 (Mutchler et al. 2006). Both sets of observations provide strong constraints on(More)
An absorption band at 260 nanometers on the trailing hemisphere of Ganymede, identified as the Hartley band of Ozone (O3), was measured with the Hubble Space Telescope. The column abundance of ozone, 4.5 x 10(16) per square centimeter, can be produced by ion impacts or by photochemical equilibrium with previously detected molecular oxygen (O2). An estimated(More)