Learn More
BACKGROUND Identifying molecular pathways regulating the development of pacemaking and coordinated heartbeat is crucial for a comprehensive mechanistic understanding of arrhythmia-related diseases. Elucidation of these pathways has been complicated mainly by an insufficient definition of the developmental structures involved in these processes and the(More)
The zebrafish has developed into an important model organism for biomedical research over the last decades. Although the main focus of zebrafish research has traditionally been on developmental biology, keeping and observing zebrafish in the lab led to the identification of diseases similar to humans, such as cancer, which subsequently became a subject for(More)
Microarray-based enrichment of selected genomic loci is a powerful method for genome complexity reduction for next-generation sequencing. Since the vast majority of exons in vertebrate genomes are smaller than 150 nt, we explored the use of short fragment libraries (85-110 bp) to achieve higher enrichment specificity by reducing carryover and adverse(More)
Among the cellular properties that are essential for the organization of tissues during animal development, the importance of cell polarity in the plane of epithelial sheets has become increasingly clear in the past decades. Planar cell polarity (PCP) signaling in vertebrates has indispensable roles in many aspects of their development, in particular,(More)
In most eukaryotes, recombination of homologous chromosomes during meiosis is necessary for proper chromosome pairing and subsequent segregation. The molecular mechanisms of meiosis are still relatively unknown, but numerous genes are known to be involved, among which are many mismatch repair genes. One of them, mlh1, colocalizes with presumptive sites of(More)
The biological role and structure-function relationship of the Na(+)Ca(2+) exchanger NCX1 have been the subject of much investigation. Subtle mutagenesis to study the function of a protein seems only feasible in in vitro systems, but genetic forward screens have the potential to provide in vivo models to study single amino acid substitutions. In a genetic(More)
Defective mismatch repair (MMR) in humans causes hereditary nonpolyposis colorectal cancer. This genetic predisposition to colon cancer is linked to heterozygous familial mutations, and loss-of-heterozygosity is necessary for tumor development. In contrast, the rare cases with biallelic MMR mutations are juvenile patients with brain tumors, skin(More)
ENU (N-ethyl-N-nitrosourea) mutagenesis is a widely accepted and proven method to introduce random point mutations in the genome. Because there are no targeted knockout strategies available for zebrafish so far, random mutagenesis is currently the preferred method in both forward and reverse genetic approaches. To obtain high-density mutagenized zebrafish,(More)
The role of the aristaless-related homeobox gene Alx4 in antero-posterior (AP-) patterning of the developing vertebrate limb has remained somewhat elusive. Polydactyly of Alx4 mutant mice is known to be accompanied by ectopic anterior expression of genes like Shh, Fgf4 and 5'Hoxd. We reported previously that polydactyly in Alx4 mutant mice requires SHH(More)
Mlh1 is a member of DNA mismatch repair (MMR) machinery and is also essential for the stabilization of crossovers during the first meiotic division. Recently, we have shown that zebrafish mlh1 mutant males are completely infertile because of a block in metaphase I, whereas females are fertile but have aneuploid progeny. When studying fertility in males in a(More)