Learn More
Stem cell therapy holds the promise to treat degenerative diseases, cancer and repair of damaged tissues for which there are currently no or limited therapeutic options. The potential of stem cell therapies has long been recognised and the creation of induced pluripotent stem cells (iPSC) has boosted the stem cell field leading to increasing development and(More)
Genetically modified organisms (GMOs), e.g. viral vectors, could threaten the environment if by their release they spread hazardous gene products. Even in contained use, to prevent adverse consequences, viral vectors carrying genes from mammals or humans should be especially scrutinized as to whether gene products that they synthesize could be hazardous in(More)
A series of six different mutants (D804A, D804E, D804G, D804N, D804Q, and D804S) of aspartate 804 present in transmembrane segment 6 of the rat Na(+),K(+)-ATPase alpha(1)-subunit were prepared and expressed in Sf9 cells by use of the baculovirus expression system. In contrast to the wild-type enzyme all mutants except D804Q showed a very high Na(+)-ATPase(More)
Gene therapy is a rapidly developing field in which recombinant nucleic acid sequences are introduced to individuals. Its therapeutic, prophylactic or diagnostic effect relates directly to the sequence it contains or to the product of genetic expression of this sequence. Recombinant adenoviral vectors (in particular HAdV-5 vectors) are frequently used in(More)
Na(+),K(+)-ATPase and gastric H(+),K(+)-ATPase are two related enzymes that are responsible for active cation transport. Na(+), K(+)-ATPase activity is inhibited specifically by ouabain, whereas H(+),K(+)-ATPase is insensitive to this drug. Because it is not known which parts of the catalytic subunit of Na(+),K(+)-ATPase are responsible for ouabain binding,(More)
Gene therapy is a rapidly developing field in which recombinant nucleic acid sequences are introduced to individuals to regulate, repair, replace, add or delete a genetic sequence. Recombinant adeno-associated viral (AAV) vectors, especially AAV2, are frequently used in gene therapy. Knowledge on the biodistribution and potential shedding of AAV2 is crucial(More)
Gastric H+,K+-ATPase can be inhibited by imidazo pyridines like 2-methyl-8-[phenylmethoxy] imidazo-(1,2a) pyridine 3-acetonitrile (SCH 28080). The drug shows a high affinity for inhibition of K+-activated ATPase and for prevention of ATP phosphorylation. The inhibition by SCH 28080 can be explained by assuming that SCH 28080 binds to both the E2 and the(More)
Six double mutants of Glu(795) and Glu(820) present in transmembrane domains 5 and 6 of the alpha-subunit of rat gastric H(+),K(+)-ATPase were generated and expressed with the baculovirus expression system. Five of the six mutants exhibited an SCH 28080-sensitive ATPase activity in the absence of K(+). The activity levels decreased in the following order:(More)
To study the role of Glu795offresent in the fifth transmembrane domain of the alpha-subunit of gastric H+,K+-ATPase, several mutants were generated and expressed in Sf9 insect cells. The E795Q mutant had rather similar properties as the wild-type enzyme. The apparent affinity for K+ in both the ATPase reaction and the dephosphorylation of the phosphorylated(More)
To investigate the role of Glu820, located in transmembrane domain M6 of the alpha-subunit of gastric H+,K+-ATPase, a number of mutants was prepared and expressed in Sf9 cells using a baculovirus encoding for both H+,K+-ATPase subunits. The wild-type enzyme and the E820D (Glu820-->Asp) mutant showed a similar biphasic activation by K+ on the ATPase activity(More)