Learn More
For many years it has been supposed that the production of an excess of nitric oxide (NO) by inducible NO synthase (iNOS) plays a major role in inflammatory diseases, including asthma. However, recent studies indicate that a deficiency of beneficial, bronchodilating constitutive NOS (cNOS)-derived NO is important in allergen-induced airway(More)
Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel(More)
1. A deficiency of constitutive nitric oxide synthase (cNOS)-derived nitric oxide (NO), due to reduced availability of L-arginine, importantly contributes to allergen-induced airway hyperresponsiveness (AHR) after the early asthmatic reaction (EAR). Since cNOS and arginase use L-arginine as a common substrate, we hypothesized that increased arginase(More)
Post-translational modifications of proteins, such as acetylation, are important regulatory events in eukaryotic cells. Reversible acetylations of histones and non-histone proteins regulate gene expression and protein activity. Acetylation levels of proteins are regulated by a dynamic equilibrium between acetylation by (histone) acetyltransferases and(More)
Chronic asthma is an inflammatory airways disease characterized by pathological changes in the airway smooth muscle (ASM) bundle that contribute to airway obstruction and hyperresponsiveness. Remodeling of the ASM is associated with an increased smooth muscle mass, involving components of cellular hypertrophy and hyperplasia, and changes in the phenotype of(More)
Airway remodelling and emphysema are major structural abnormalities in chronic obstructive pulmonary disease (COPD). In addition, pulmonary vascular remodelling may occur and contribute to pulmonary hypertension, a comorbidity of COPD. Increased cholinergic activity in COPD contributes to airflow limitation and, possibly, to inflammation and airway(More)
Peroxynitrite has been shown to be crucially involved in airway hyperresponsiveness (AHR) after the late asthmatic reaction (LAR). Peroxynitrite production may result from simultaneous synthesis of nitric oxide (NO) and superoxide by inducible NO-synthase (iNOS) at low L-arginine concentrations. L-arginine availability to iNOS is regulated by its cellular(More)
BACKGROUND AND PURPOSE Changes in airway smooth muscle (ASM) phenotype may contribute to the pathogenesis of airway disease. Platelet-derived growth factor (PDGF) switches ASM from a contractile to a proliferative, hypo-contractile phenotype, a process requiring activation of extracellular signal-regulated kinase (ERK) and p70(S6) Kinase (p70(S6K) ). The(More)
RATIONALE Arginase probably plays an important role in asthma development, severity and progression. Polymorphisms in arginase 1 and arginase 2 genes have been associated with childhood asthma and FEV1 reversibility to beta2 agonists. OBJECTIVES We investigated the association between arginase 1 and arginase 2 polymorphisms and adult asthma, asthma(More)
It has been established that polycations cause airway hyperresponsiveness (AHR) to methacholine by inducing a deficiency of constitutive nitric oxide synthase (cNOS)-derived bronchodilating nitric oxide (NO). Since a deficiency of cNOS-derived NO also contributes to allergen-induced AHR after the early asthmatic reaction (EAR) and since this AHR is(More)