Learn More
The recent proliferation of protein interaction networks has motivated research into network alignment: the cross-species comparison of conserved functional modules. Previous studies have laid the foundations for such comparisons and demonstrated their power on a select set of sparse interaction networks. Recently, however, new computational techniques have(More)
The chromosomal origin and terminus of replication are precisely localized in bacterial cells. We examined the cellular position of 112 individual loci that are dispersed over the circular Caulobacter crescentus chromosome and found that in living cells each locus has a specific subcellular address and that these loci are arrayed in linear order along the(More)
This report presents full-genome evidence that bacterial cells use discrete transcription patterns to control cell cycle progression. Global transcription analysis of synchronized Caulobacter crescentus cells was used to identify 553 genes (19% of the genome) whose messenger RNA levels varied as a function of the cell cycle. We conclude that in bacteria, as(More)
Bacteria are often highly polarized, exhibiting specialized structures at or near the ends of the cell. Among such structures are actin-organizing centers, which mediate the movement of certain pathogenic bacteria within the cytoplasm of an animal host cell; organized arrays of membrane receptors, which govern chemosensory behavior in swimming bacteria; and(More)
We have combined four different types of functional genomic data to create high coverage protein interaction networks for 11 microbes. Our integration algorithm naturally handles statistically dependent predictors and automatically corrects for differing noise levels and data corruption in different evidence sources. We find that many of the predictions in(More)
Despite their small size, bacteria have a remarkably intricate internal organization. Bacteria deploy proteins and protein complexes to particular locations and do so in a dynamic manner in lockstep with the organized deployment of their chromosome. The dynamic subcellular localization of protein complexes is an integral feature of regulatory processes of(More)
Biochemical and genetic approaches have identified the molecular mechanisms of many genetic reactions, particularly in bacteria. Now a comparably detailed understanding is needed of how groupings of genes and related protein reactions interact to orchestrate cellular functions over the cell cycle, to implement preprogrammed cellular development, or to(More)
Caulobacter crescentus undergoes an asymmetric cell division controlled by a genetic circuit that cycles in space and time. We provide a universal strategy for defining the coding potential of bacterial genomes by applying ribosome profiling, RNA-seq, global 5'-RACE, and liquid chromatography coupled with tandem mass spectrometry (LC-MS) data to the(More)
The bacterium Caulobacter crescentus has morphologically and functionally distinct cell poles that undergo sequential changes during the cell cycle. We show that the PopZ oligomeric network forms polar ribosome exclusion zones that change function during cell cycle progression. The parS/ParB chromosomal centromere is tethered to PopZ at one pole prior to(More)