Harley D. Eades

Learn More
Dependently typed programming languages provide a mechanism for integrating verification and programming by encoding invariants as types. Traditionally, dependently typed languages have been based on constructive type theories, where the connection between proofs and programs is based on the Curry-Howard correspondence. This connection comes at a price,(More)
We present a full-spectrum dependently typed core language which includes both nontermination and computational irrelevance (a.k.a. erasure), a combination which has not been studied before. The two features interact: to protect type safety we must be careful to only erase terminating expressions. Our language design is strongly influenced by the choice of(More)
We propose a new bi-intuitionistic type theory called Dualized Type Theory (DTT). It is a simple type theory with perfect intuitionistic duality, and corresponds to a single-sided polarized sequent calculus. We prove DTT strongly normalizing, and prove type preservation. DTT is based on a new propositional bi-intuitionistic logic called Dualized(More)
We propose a new bi-intuitionistic type theory called Dualized Type Theory (DTT). It is a type theory with perfect intuitionistic duality, and corresponds to a single-sided polarized sequent calculus. We prove DTT strongly normalizing, and prove type preservation. DTT is based on a new propositional bi-intuitionistic logic called Dualized Intuitionistic(More)