Harish Veeramani

Learn More
A promising remediation approach to mitigate subsurface uranium contamination is the stimulation of indigenous bacteria to reduce mobile U(VI) to sparingly soluble U(IV). The product of microbial uranium reduction is often reported as the mineral uraninite. Here, we show that the end products of uranium reduction by several environmentally relevant bacteria(More)
The stability of biogenic uraninite with respect to oxidation is seminal to the success of in situ bioreduction strategies for remediation of subsurface U(VI) contamination. The properties and hence stability of uraninite are dependent on its size, structure, and composition. In this study, the local-, intermediate-, and long-range molecular-scale structure(More)
While the product of microbial uranium reduction is often reported to be "UO(2)", a comprehensive characterization including stoichiometry and unit cell determination is available for only one Shewanella species. Here, we compare the products of batch uranyl reduction by a collection of dissimilatory metal- and sulfate-reducing bacteria of the genera(More)
Reduction of hexavalent chromium was studied in three bench-scale continuous stirred tank reactors. The inoculum was a culture of Pseudomonas sp., capable of giving 83% to 87% chromate reduction in 72-h batch assays with 60 mg Cr(VI) L(-1) in synthetic medium. The continuous culture studies were conducted for about 100 days using synthetic feed containing(More)
During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide(More)
The efficacy of a site remediation strategy involving the stimulaton of microbial U(VI) reduction hinges in part upon the long-term stability of the product, biogenic uraninite, toward environmental oxidants. Geological sedimentary uraninites (nominal formula UO2) reportedly contain abundant cation impurities that enhance their resistance to oxidation. By(More)
The reduction of soluble hexavalent uranium to tetravalent uranium can be catalyzed by bacteria and minerals. The end-product of this reduction is often the mineral uraninite, which was long assumed to be the only product of U(VI) reduction. However, recent studies report the formation of other species including an adsorbed U(IV) species, operationally(More)
The performance of a three-stage suspended growth continuous system consisting of anaerobic-anoxic-aerobic reactors was evaluated after injection of a pulse phenol shock load in the anaerobic reactor. The synthetic feed contained phenol, cyanide, thiocyanate and ammonia-nitrogen. Anaerobic reactor required 22 days to regain its previous cyanide removal(More)
The chemical stability of biogenic UO2, a nanoparticulate product of environmental bioremediation, may be impacted by the particles' surface free energy, structural defects, and compositional variability in analogy to abiotic UO(2+x) (0 < or = x < or = 0.25). This study quantifies and compares intrinsic solubility and dissolution rate constants of biogenic(More)
Reductive bioremediation is currently being explored as a possible strategy for uranium-contaminated aquifers such as the Old Rifle site (Colorado). The stability of U(IV) phases under oxidizing conditions is key to the performance of this procedure. An in situ method was developed to study oxidative dissolution of biogenic uraninite (UO₂), a desirable(More)