Hariolf Fritzenschaft

Learn More
Polyamines cause inward rectification of (Kir) K+ channels, but the mechanism is controversial. We employed scanning mutagenesis of Kir6.2, and a structural series of blocking diamines, to combinatorially examine the role of both channel and blocker charges. We find that introduced glutamates at any pore-facing residue in the inner cavity, up to and(More)
abstract Polyamines cause inward rectification of (Kir) K ϩ channels, but the mechanism is controversial. We employed scanning mutagenesis of Kir6.2, and a structural series of blocking diamines, to combinatorially examine the role of both channel and blocker charges. We find that introduced glutamates at any pore-facing residue in the inner cavity, up to(More)
Two-pore domain (K2P) potassium channels are important regulators of cellular electrical excitability. However, the structure of these channels and their gating mechanism, in particular the role of the bundle-crossing gate, are not well understood. Here, we report that quaternary ammonium (QA) ions bind with high-affinity deep within the pore of TREK-1 and(More)
Phosphatidylinositol polyphosphates (PIPs) are potent modulators of Kir channels. Previous studies have implicated basic residues in the C terminus of Kir6.2 channels as interaction sites for the PIPs. Here we examined the role of the N terminus and identified an arginine (Arg-54) as a major determinant for PIP(2) modulation of ATP sensitivity in K(ATP)(More)
abstract Polyamines cause inward rectification of (Kir) K ϩ channels, but the mechanism is controversial. We employed scanning mutagenesis of Kir6.2, and a structural series of blocking diamines, to combinatorially examine the role of both channel and blocker charges. We find that introduced glutamates at any pore-facing residue in the inner cavity, up to(More)
  • 1