Harilal Parasuram

Learn More
Understanding population activities of underlying neurons reveal emergent behavior as patterns of information flow in neural circuits. Evoked local field potentials (LFPs) arise from complex interactions of spatial distribution of current sources, time dynamics, and spatial distribution of dipoles apart underlying conductive properties of the extracellular(More)
Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular(More)
Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based(More)
Extracellular electrodes record local field potential as an average response from the neurons within the vicinity of the electrode. Here, we used neuronal models and point source approximation techniques to study the compartmental contribution of single neuron LFP and the attenuation properties of extracellular medium. Cable compartmental contribution of(More)
Rapid progress in biophysical neural network modeling has been observed in the last years as a focus within computational neuroscience. Detailed multi-compartmental neuron models that were built to simulate physiological aspects of cerebellar neurons and microcircuits involve hundreds of equations. Simulating several hundreds of neurons is computationally(More)
Local Field Potentials (LFP) allow interpretations of patterns of information generated by neuronal populations. LFPs are Low frequency (<;300 Hz) population signals recorded with glass or metal electrodes and are known to be generated by complex spatiotemporal interactions of synaptic stimuli in combination with sink-source behavior in the circuit.(More)
  • 1