Learn More
Elimination of apoptotic neurons without inflammation is crucial for brain tissue homeostasis, but the molecular mechanism has not been firmly established. Triggering receptor expressed on myeloid cells-2 (TREM2) is a recently identified innate immune receptor. Here, we show expression of TREM2 in microglia. TREM2 stimulation induced DAP12 phosphorylation,(More)
Microglia are cells of myeloid origin that populate the CNS during early development and form the brain's innate immune cell type. They perform homoeostatic activity in the normal CNS, a function associated with high motility of their ramified processes and their constant phagocytic clearance of cell debris. This debris clearance role is amplified in CNS(More)
Cytotoxic T lymphocytes (CTLs) with a CD8(+) phenotype have the potential to recognize and attack major histocompatibility complex (MHC) class I-expressing brain cells. Most brain cells, including neurons, can be stimulated to present peptides to CD8(+) CTLs by MHC class I molecules, and are susceptible to CTL-mediated cytotoxicity in culture. In(More)
The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain(More)
Recent findings indicate that neurons are not merely passive targets of microglia but rather control microglial activity. The variety of different signals that neurons use to control microglia can be divided into two categories: 'Off' signals constitutively keep microglia in their resting state and antagonize proinflammatory activity. 'On' signals are(More)
Arylamines, nitroarenes, and azo dyes yield a common type of metabolite, the nitroarene, which produces a hydrolyzable adduct with protein and is closely related to the critical, ultimate toxic and genotoxic metabolite. The target dose as measured by hemoglobin adducts in erythrocytes reflects not only the actual uptake from the environment but also an(More)
Brain-derived neurotrophic factor plays a key role in neuronal and axonal survival. Brain-derived neurotrophic factor is expressed in the immune cells in lesions of experimental autoimmune encephalomyelitis and multiple sclerosis, thus potentially mediating neuroprotective effects. We investigated the functional role of brain-derived neurotrophic factor in(More)
Vaccine-based autoimmune (anti-amyloid) treatments are currently being examined for their therapeutic potential in Alzheimer's disease. In the present study we examined, in a transgenic model of amyloid pathology, the expression of two molecules previously implicated in decreasing the severity of autoimmune responses: TREM2 (triggering receptor expressed on(More)
While there is a strong evidence for neural tissue destruction mediated by adaptive autoimmune responses, it is still debated how innate immune responses contribute to neuroinflammatory and neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease. Recently, it was shown that loss-of-function mutations of the innate microglial immune(More)
Sialic acid-binding Ig superfamily lectins (Siglecs) are members of the Ig superfamily that recognize sialic acid residues of glycoproteins. Siglec-11 is a recently identified human-specific CD33-related Siglec that binds to alpha2,8-linked polysialic acids and is expressed on microglia, the brain resident innate immune cells. Polysialylated neuronal cell(More)