Learn More
Elimination of apoptotic neurons without inflammation is crucial for brain tissue homeostasis, but the molecular mechanism has not been firmly established. Triggering receptor expressed on myeloid cells-2 (TREM2) is a recently identified innate immune receptor. Here, we show expression of TREM2 in microglia. TREM2 stimulation induced DAP12 phosphorylation,(More)
Microglia are cells of myeloid origin that populate the CNS during early development and form the brain's innate immune cell type. They perform homoeostatic activity in the normal CNS, a function associated with high motility of their ramified processes and their constant phagocytic clearance of cell debris. This debris clearance role is amplified in CNS(More)
Cytotoxic T lymphocytes (CTLs) with a CD8(+) phenotype have the potential to recognize and attack major histocompatibility complex (MHC) class I-expressing brain cells. Most brain cells, including neurons, can be stimulated to present peptides to CD8(+) CTLs by MHC class I molecules, and are susceptible to CTL-mediated cytotoxicity in culture. In(More)
Whether neurons express major histocompatibility complex (MHC) class I genes has not been firmly established. The techniques of confocal laser microscopy, patch clamp electrophysiology, and reverse transcriptase-polymerase chain reaction were combined here to directly examine the inducibility of MHC class I genes in individual cultured rat hippocampal(More)
The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain(More)
Recent findings indicate that neurons are not merely passive targets of microglia but rather control microglial activity. The variety of different signals that neurons use to control microglia can be divided into two categories: 'Off' signals constitutively keep microglia in their resting state and antagonize proinflammatory activity. 'On' signals are(More)
In response to injury and inflammation of the CNS, brain cells including microglia and astrocytes secrete tumor necrosis factor-alpha (TNF). This pro-inflammatory cytokine has been implicated in both neuronal cell death and survival. We now provide evidence that TNF affects the formation of neurites. Neurons cultured on astrocytic glial cells exhibited(More)
Major histocompatibility complex (MHC) molecules are rare in the healthy brain tissue, but are heavily expressed on microglial cells after inflammatory or neurodegenerative processes. We studied the conditions leading to the induction of MHC class II molecules in microglia by using explant cultures of neonatal rat hippocampus, a model of interacting(More)
This study examined the effect of the pro-inflammatory cytokines interferon-␥ (IFN-␥) and tumor necrosis factor-␣ (TNF-␣) on the induction of MHC class I–related genes in functionally mature brain neurons derived from cultures of dissociated rat hippocampal tissue. Patch clamp electrophysiology combined with single cell RT-PCR demonstrated that ‫ف‬ 50% of(More)
We analysed the inducibility of major histocompatibility complex (MHC) class II molecules of astrocytes and microglia in organotypic hippocampus slice cultures of Lewis rats. Treatment with interferon-gamma (IFN-gamma) resulted in the induction of MHC class II molecules on microglia preferentially in the injured marginal zones of the slice culture, but only(More)