Harald Khier

Learn More
Histone deacetylases (HDACs) modulate chromatin structure and transcription, but little is known about their function in mammalian development. HDAC1 was implicated previously in the repression of genes required for cell proliferation and differentiation. Here we show that targeted disruption of both HDAC1 alleles results in embryonic lethality before E10.5(More)
Reversible acetylation of core histones plays an important role in transcriptional regulation, cell cycle progression, and developmental events. The acetylation state of histones is controlled by the activities of acetylating and deacetylating enzymes. By using differential mRNA display, we have identified a mouse histone deacetylase gene, HD1, as an(More)
Reversible histone acetylation plays an important role for chromatin structure and gene expression. The acetylation state of core histones is controlled by histone acetyltransferases and histone deacetylases. Here we report the cloning and characterization of the mouse histone deacetylase 1 (HDAC1) gene. The mouse genome contains several HDAC1-related(More)
Histone deacetylase 1 (HDAC1) is a major regulator of chromatin structure and gene expression. Tight control of HDAC1 expression is essential for development and normal cell cycle progression. In this report, we analyzed the regulation of the mouse HDAC1 gene by deacetylases and acetyltransferases. The murine HDAC1 promoter lacks a TATA box consensus(More)
The expression of the salvage pathway enzyme thymidine kinase (TK) is very low in resting mammalian cells, but increases dramatically when growth-stimulated cells enter S phase. The 30-fold rise in TK mRNA levels in response to growth factors is due to a well-characterized transcriptional activation and less defined post-transcriptional mechanisms. A(More)
  • 1