Haralambos Hatzikirou

Learn More
Human beings are thought to be unique amongst the primates in their capacity to produce rapid changes in the shape of their vocal tracts during speech production. Acoustically, vocal tracts act as resonance chambers, whose geometry determines the position and bandwidth of the formants. Formants provide the acoustic basis for vowels, which enable speakers to(More)
OBJECTIVES Tumour progression has been described as a sequence of traits or phenotypes that cells have to acquire if the neoplasm is to become an invasive and malignant cancer. Although genetic mutations that lead to these phenotypes are random, the process by which some of these mutations become successful and cells spread is influenced by tumour(More)
Studying the emergence of invasiveness in tumours using game theory EPJ manuscript No. the date of receipt and acceptance should be inserted later Abstract. Tumour cells have to acquire a number of capabilities if a neoplasm is to become a cancer. One of these key capabilities is increased motility which is needed for invasion of other tissues and(More)
Tumour cells show a varying susceptibility to radiation damage as a function of the current cell cycle phase. While this sensitivity is averaged out in an unperturbed tumour due to unsynchronised cell cycle progression, external stimuli such as radiation or drug doses can induce a resynchronisation of the cell cycle and consequently induce a collective(More)
Currently, most of the basic mechanisms governing tumour-immune system interactions, in combination with modulations of tumour-associated vasculature, are far from being completely understood. Here, we propose a mathematical model of vascularized tumour growth, where the main novelty is the modelling of the interplay between functional tumour vasculature(More)
Despite recent advances in the field of Oncoimmunology, the success potential of immunomodulatory therapies against cancer remains to be elucidated. One of the reasons is the lack of understanding on the complex interplay between tumor growth dynamics and the associated immune system responses. Toward this goal, we consider a mathematical model of(More)
Tumor cells develop different strategies to cope with changing microenvironmental conditions. A prominent example is the adaptive phenotypic switching between cell migration and proliferation. While it has been shown that the migration-proliferation plasticity influences tumor spread, it remains unclear how this particular phenotypic plasticity affects(More)