Learn More
A new numerical approach for modeling a class of flow-structure interaction problems typically encountered in biological systems is presented. In this approach, a previously developed, sharp-interface, immersed-boundary method for incompressible flows is used to model the fluid flow and a new, sharp-interface Cartesian grid, immersed boundary method is(More)
The false vocal folds are believed to be components of the acoustic filter that is responsible for shaping the voice. However, the effects of false vocal folds on the vocal fold vibration and the glottal aerodynamic during phonation remain unclear. This effect has implications for computational modeling of phonation as well as for understanding laryngeal(More)
A recently developed immersed-boundary method is used to model the flow-structure interaction associated with the human phonation. The glottal airflow is modeled as a two-dimensional incompressible flow driven by a constant subglottal pressure, and the vocal folds are modeled as a pair of three-layered, two-dimensional, viscoelastic structures. Both the(More)
A three-dimensional computational fluid dynamics simulation is performed for a ruby-throated hummingbird (Archilochus colubris) in hovering flight. Realistic wing kinematics are adopted in the numerical model by reconstructing the wing motion from high-speed imaging data of the bird. Lift history and the three-dimensional flow pattern around the wing in(More)
We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the(More)
  • M G Blyth, H Luo, C Pozrikidis
  • 2007
A simple strategy for constructing a sequence of increasingly refined interpolation grids over the triangle or the tetrahedron is discussed with the goal of achieving uniform convergence and ensuring high interpolation accuracy. The interpolation nodes are generated based on a one-dimensional master grid comprised of the zeros of the Lobatto, Legendre,(More)
Insect wings in flight typically deform under the combined aerodynamic force and wing inertia; whichever is dominant depends on the mass ratio defined as m ‫ء‬ = ␳ s h / ͑␳ f c͒, where ␳ s h is the surface density of the wing, ␳ f is the density of the air, and c is the characteristic length of the wing. To study the differences that the wing inertia makes(More)