Learn More
A new numerical approach for modeling a class of flow-structure interaction problems typically encountered in biological systems is presented. In this approach, a previously developed, sharp-interface, immersed-boundary method for incompressible flows is used to model the fluid flow and a new, sharp-interface Cartesian grid, immersed boundary method is(More)
The false vocal folds are believed to be components of the acoustic filter that is responsible for shaping the voice. However, the effects of false vocal folds on the vocal fold vibration and the glottal aerodynamic during phonation remain unclear. This effect has implications for computational modeling of phonation as well as for understanding laryngeal(More)
A recently developed immersed-boundary method is used to model the flow-structure interaction associated with the human phonation. The glottal airflow is modeled as a two-dimensional incompressible flow driven by a constant subglottal pressure, and the vocal folds are modeled as a pair of three-layered, two-dimensional, viscoelastic structures. Both the(More)
We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the(More)
Dielectrophoresis has shown a wide range of applications in microfluidic devices. Force approximations utilizing the point-dipole method in dielectrophoresis have provided convenient predictions for particle motion by neglecting interactions between the particle and its surrounding electric and flow fields. The validity of this approach, however, is unclear(More)
Electrophoresis of a cylindrical particle placed between two parallel walls is considered for arbitrary eccentricity. The electric field is perpendicular to the particle axis, and both the particle and walls are non-conducting. The electrical double layers adjacent to the solid surfaces are assumed to be thin with respect to the particle radius and to the(More)
A three-dimensional computational fluid dynamics simulation is performed for a ruby-throated hummingbird (Archilochus colubris) in hovering flight. Realistic wing kinematics are adopted in the numerical model by reconstructing the wing motion from high-speed imaging data of the bird. Lift history and the three-dimensional flow pattern around the wing in(More)
(Received ?? and in revised form ??) In order to study the role of the passive deformation in the aerodynamics of insect wings, we computa-tionally model the three-dimensional fluid–structure interaction of an elastic rectangular wing at a low aspect ratio during hovering flight. The code couples a viscous incompressible flow solver based on the(More)
A filament flapping in the bow wake of a rigid body is considered in order to study the hydrodynamic interaction between flexible and rigid bodies in tandem arrangement. Both numerical and experimental methods are adopted to analyze the motion of the filament, and the drag force on both bodies is computed. It is shown that the results largely depend on the(More)
A body with a traveling-wave surface (TWS) is investigated by solving the incompressible Navier-Stokes equation numerically to understand the mechanisms of a novel propulsive strategy. In this study, a virtual model of a foil with a flexible surface which performs a traveling-wave movement is used as a free swimming body. Based on the simulations by varying(More)