Haoqiang Zhang

Learn More
The process of ecological restoration and reconstruction in Zhifanggou watershed forms a special ecosystem on the Loess Plateau. Little is known about the communities of arbuscular mycorrhizal fungi (AMF) and bacteria in this ecosystem. The aim of this study was to analyze the communities of AMF and bacteria, and their relationship in the rhizosphere of(More)
Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We(More)
Arbuscular mycorrhizal (AM) fungi can assist their hosts to cope with water stress and other abiotic stresses in different ways. In order to test whether AM plants have a greater capacity than control plants to cope with water stress, we investigated the water status and photosynthetic capacity of Lycium barbarum colonized or not by the AM fungus(More)
The effect of arbuscular mycorrhizal fungus on the subcellular compartmentalization and chemical forms of lead (Pb) in Pb tolerance plants was assessed in a pot experiment in greenhouse conditions. We measured root colonization, plant growth, photosynthesis, subcellular compartmentalization and chemical forms of Pb in black locust (Robinia pseudoacacia L.)(More)
Potassium in plants accounts for up to 10% dry weight, and participates in different physiological processes. Under drought stress, plant requires more potassium but potassium availability in soil solutes is lowered by decreased soil water content. Forming symbiosis with arbuscular mycorrhizal (AM) fungi not only enlarges exploration range of plant for(More)
Intra-leaf nitrogen allocation plays a pivotal role in plant growth performance; however, the effects of arbuscular mycorrhizal (AM) fungi on the allocation of nitrogen within a leaf remain poorly understood. A pot experiment was conducted with different nitrogen levels and Populus × canadensis ‘Neva’ with or without Rhizophagus irregularis inoculation. The(More)
Phosphorus (P) is vitally important for most plant processes. However, the P available to plants is present in the soil in the form of inorganic phosphate (Pi), and is often present in only limited amounts. Water stress further reduces Pi availability. Previous studies have highlighted the important roles of members of the PHOSPHATE TRANSPORTER 1 (PHT1)(More)
Pinus tabulaeformis (Chinese pine) is a widely planted conifer species in northern China and is used for soil and water conservation on the Loess Plateau. Due to its strong reliance on ectomycorrhizae and low survival rate from damping-off during seedling cultivation and in nurseries, we explored the early influence of three ectomycorrhizal fungi (Handkea(More)
The influence of arbuscular mycorrhiza (AM) and drought stress on aquaporin (AQP) gene expression, water status, and photosynthesis was investigated in black locust (Robinia pseudoacacia L.). Seedlings were grown in potted soil inoculated without or with the AM fungus Rhizophagus irregularis, under well-watered and drought stress conditions. Six full-length(More)
Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status(More)