• Citations Per Year
Learn More
Advances in Web 2.0 technology has led to the rising popularity of many social network services. For example, there are over 500 million active users in Twitter. Given the huge number of users, user recommendation has gained importance where the goal is to find a set of users whom a target user is likely to follow. Content-based approaches that rely on(More)
Traditional supervised classifiers use only labeled data (features/label pairs) as the training set, while the unlabeled data is used as the testing set. In practice, it is often the case that the labeled data is hard to obtain and the unlabeled data contains the instances that belong to the predefined class but not the labeled data categories. This problem(More)
Traditional supervised classifiers use only labeled data (features/label pairs) as the training set, while the unlabeled data is used as the testing set. In practice, it is often the case that the labeled data is hard to obtain and the unlabeled data contains the instances that belong to the predefined class beyond the labeled data categories. This problem(More)
Numerous applications such as data integration, protein detection, and article copy detection share a similar core problem: given a string as the query, how to efficiently find all the similar answers from a large scale string collection. Many existing methods adopt a prefix-filter-based framework to solve this problem, and a number of recent works aim to(More)
This paper proposes a novel perceptual video coding approach with a perceptual model of multiple faces, to improve the coding efficiency of HEVC in video conferencing scenarios. For the perceptual model, a latest active appearance model (AAM) is used to detect multiple faces in a video frame. Then, the perceptual model of multiple faces can be established(More)
  • 1