Haochang Shou

Learn More
This article proposes the image intraclass correlation (I2C2) coefficient as a global measure of reliability for imaging studies. The I2C2 generalizes the classic intraclass correlation (ICC) coefficient to the case when the data of interest are images, thereby providing a measure that is both intuitive and convenient. Drawing a connection with classical(More)
We develop a flexible framework for modeling high-dimensional imaging data observed longitudinally. The approach decomposes the observed variability of repeatedly measured high-dimensional observations into three additive components: a subject-specific imaging random intercept that quantifies the cross-sectional variability, a subject-specific imaging slope(More)
We introduce an explicit set of metrics for human activity based on high-density acceleration recordings from a hip-worn tri-axial accelerometer. These metrics are based on two concepts: (i) Time Active, a measure of the length of time when activity is distinguishable from rest and (ii) AI, a measure of the relative amplitude of activity relative to rest.(More)
Motivated by modern observational studies, we introduce a class of functional models that expand nested and crossed designs. These models account for the natural inheritance of the correlation structures from sampling designs in studies where the fundamental unit is a function or image. Inference is based on functional quadratics and their relationship with(More)
A recent interest in resting state functional magnetic resonance imaging (rsfMRI) lies in subdividing the human brain into anatomically and functionally distinct regions of interest. For example, brain parcellation is often a necessary step for defining the network nodes used in connectivity studies. While inference has traditionally been performed on(More)
Resting-state functional magnetic resonance imaging (rs-fMRI) is used to investigate synchronous activations in spatially distinct regions of the brain, which are thought to reflect functional systems supporting cognitive processes. Analyses are often performed using seed-based correlation analysis, allowing researchers to explore functional connectivity(More)
The earliest sites of brain atrophy in Alzheimer's disease are in the medial temporal lobe, following widespread cerebral cortical amyloid deposition. We assessed 74 cognitively normal participants with clinical measurements, amyloid-β-PET imaging, MRI, and a newly developed technique for MRI-based hippocampal subfield segmentation to determine the(More)
Brain lesion localization in multiple sclerosis (MS) is thought to be associated with the type and severity of adverse health effects. However, several factors hinder statistical analyses of such associations using large MRI datasets: 1) spatial registration algorithms developed for healthy individuals may be less effective on diseased brains and lead to(More)
  • 1