Learn More
NupG from Escherichia coli is the archetype of a family of nucleoside transporters found in several eubacterial groups and has distant homologues in eukaryotes, including man. To facilitate investigation of its molecular mechanism, we developed methods for expressing an oligohistidine-tagged form of NupG both at high levels (>20% of the inner membrane(More)
The heme-copper oxidases (HCOs) accomplish the key event of aerobic respiration; they couple O2 reduction and transmembrane proton pumping. To gain new insights into the still enigmatic process, we structurally characterized a C-family HCO--essential for the pathogenicity of many bacteria--that differs from the two other HCO families, A and B, that have(More)
This paper reviews our work on the fabrication of photobiochemical hybrid materials via immobilisation of photosynthetically active entities within silica materials, summarising the viability and productivity of these active entities post encapsulation and evaluating their efficiency as the principal component of a photobioreactor. Immobilisation of(More)
The 2 nanomotors of rotary ATP synthase, ionmotive F(O) and chemically active F(1), are mechanically coupled by a central rotor and an eccentric bearing. Both motors rotate, with 3 steps in F(1) and 10-15 in F(O). Simulation by statistical mechanics has revealed that an elastic power transmission is required for a high rate of coupled turnover. Here, we(More)
Glucose stimulates insulin secretion from pancreatic beta cells by inducing the recruitment and fusion of insulin vesicles to the plasma membrane. However, little is currently known about the mechanism of the initial docking or tethering of insulin vesicles prior to fusion. Here, we examined the role of the SEC6-SEC8 (exocyst) complex, implicated in(More)
Pm12, transferred from Aegilops speltoides (2n = 2x = 14, genome SS) to wheat, confers effective resistance to powdery mildew worldwide. By applying bulked segregant analysis in a BC3F2 segregating population consisting of 305 plants, 18 wheat genomic and EST-SSR markers linked to the resistance gene were identified. Pm12 was located in the 6SS portion of(More)
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases worldwide. Pyramiding different resistance genes into single cultivar has been proposed as one remedy to provide durable resistance. Powdery mildew resistance genes Pm12 (T6BS-6SS.6SL), transferred from Aegilops speltoides to wheat cv. Wembley, and Pm21(More)
Two genes, gusB and gusC, from a natural fecal isolate of Escherichia coli are shown to encode proteins responsible for transport of beta-glucuronides with synthetic [(14)C]phenyl-1-thio-beta-d-glucuronide as the substrate. These genes are located in the gus operon downstream of the gusA gene on the E. coli genome, and their expression is induced by a(More)
Interstitial deletion or loss of chromosome 5 is frequent in malignant myeloid disorders, including myelodysplasia (MDS) and acute myeloid leukemia (AML), suggesting the presence of a tumor suppressor gene. Loss of heterozygosity (LOH) analysis was used to define a minimal deletion interval for this gene. Polymorphic markers on 5q31 were identified using a(More)
OBJECTIVE The human immune system exhibits sexual dimorphism in autoimmune diseases such as systemic lupus erythematosus (SLE). Female sex hormones, including 17β-estradiol, are strongly implicated in the gender bias in SLE. CD40 is a costimulatory molecule and plays a crucial role in modulating the immune response of effector cells. We have previously(More)