• Citations Per Year
Learn More
A series of green-emitting up-conversion (UC) phosphors Ba5Gd8Zn4O21:Yb(3+),Ho(3+) were prepared by a modified sol-gel method, and X-ray diffraction (XRD) patterns were measured to characterize the crystal structure. The obtained UC samples emit dazzling green light and their spectra are composed of strong green emission peaking at 544 nm and negligible red(More)
Eu(2+) activated fluorophosphate Ba3GdNa(PO4)3F (BGNPF) with blue and red double-color emitting samples were prepared via a solid-state method in a reductive atmosphere. Their crystal structure and cationic sites were identified in light of X-ray diffraction pattern Rietveld refinement. Three different Ba(2+) sites, coordinated by six O atoms referred to as(More)
Investigation of the unclear influential factors to thermal sensing capability is the only way to achieve highly sensitive thermometry, which is greatly needed to meet the growing demand for potential sensing applications. Here, the effect from the phonon energy of a matrix on the sensitivity of upconversion (UC) microthermometers is elaborately discussed(More)
Yb(3+)/Er(3+)-ion co-doped Na2Ln2Ti3O10 (Ln = Gd, La) up-conversion (UC) phosphors were successfully synthesized by a sol-gel method, and their crystal structures were characterized by powder X-ray diffraction. Dazzling yellow-greenish light was emitted under the excitation of 980 nm near-infrared (NIR) light, composing green and red emission bands from the(More)
Mn4+-activated oxide phosphors La(MgTi)1/2O3 (LMT) with far-red emitting were prepared via a sol-gel route. The structures of samples were determined by X-ray diffraction (XRD) and Reitveld refinement. The occupied sites of Mn4+ (d3 electronic configuration) in host La(MgTi)1/2O3 were confirmed by ab initio calculations in which the system has the lower(More)
The realization of real-time and accurate temperature reading at subcutaneous level during the photothermal therapy (PTT) could maximally avoid the collateral damages induced by overheating effects, which remains a formidable challenge for biomedical applications. Herein, 808 nm light-driven yolk-shell GdOF:Nd3+/Yb3+/Er3+@SiO2 microcapsules were developed(More)
  • 1