Learn More
IκB kinase β (IKKβ) is an important anti-cancer target that plays crucial role in activating the transcription factor NF-κB in response to various inflammatory stimuli. In order to discover novel IKKβ inhibitors, a 3D chemical-feature-based QSAR pharmacophore model was established. A homology model of IKKβ enzyme was also developed to study the binding mode(More)
Degradation of certain proteins through the ubiquitin-proteasome pathway is a common strategy taken by the key modulators responsible for stress responses. Kelch-like ECH-associated protein-1(Keap1), a substrate adaptor component of the Cullin3 (Cul3)-based ubiquitin E3 ligase complex, mediates the ubiquitination of two key modulators, NF-E2-related factor(More)
Keap1 is known to mediate the ubiquitination of Nrf2, a master regulator of the antioxidant response. Directly interrupting the Keap1-Nrf2 interaction has been emerged as a promising strategy to develop novel class of antioxidant, antiinflammatory, and anticancer agents. On the basis of the molecular binding determinants analysis of Keap1, we successfully(More)
Kv1.5 potassium channel is an efficacious and safe therapeutic target for the treatment of atrial fibrillation (AF), the most common arrhythmia that threatens human. Herein, by modifying the hit compound 7k from an in-house database, 48 derivatives were synthesized for the assay of their Kv1.5 inhibitory effects by whole cell patch clamp technique. Six(More)
Nuclear factor erythroid 2-related factor (NRF2) is an important transcription factor in oxidative stress regulation. Overexpression of NRF2 is associated with human breast carcinogenesis, and increased NRF2 mRNA levels predict poor patient outcome for breast cancer. However, the mechanisms linking gain of NRF2 expression and poor prognosis in breast cancer(More)
Tumor necrosis factor-α (TNF-α) is being used as an antineoplastic agent in treatment regimens of patients with locally advanced solid tumors, but TNF-α alone is only marginally active. In clinical use, it is usually combined with other chemical agents to increase its tumor response rate. Our previous studies reported that LYG-202(More)
NF-κB is a significant transcription factor that regulates the expression of various pro-survival genes. IKK is a crucial protein kinase that activates NF-κB translocating from cytoplasm to nucleus for DNA binding. It is composed of three subunits, IKKα, IKKβ, IKKγ (NEMO), where IKKα and IKKβ are catalytic subunits, and IKKγ is the regulatory subunit. Many(More)
Gambogic acid (GA) has been reported as a potent apoptosis inducer. Previously, we have reported chemical modification at C(34) and C(39) of GA, leading to some agents with improved activity. To investigate the further structure-activity relationship (SAR) and preliminary mechanism of GA activity, a series of derivatives with modified prenyl side chains of(More)
Heat-shock protein 90 (Hsp90) is highly expressed in many tumor cells and is associated with the maintenance of malignant phenotypes. Targeting Hsp90 has had therapeutic success in both solid and hematological malignancies, which has inspired more studies to identify new Hsp90 inhibitors with improved clinical efficacy. Using a fragment-based approach and(More)
p53 protein is a prominent tumor suppressor to induce cell cycle arrest, apoptosis and senescence, which attracts significant interest to cancer treatment. Therefore, it would be particularly important to restore the wild-type p53 that retains latent functions in the approximately 50% of tumors. MDM2 (murine double minute 2), the principal cellular(More)